簡易檢索 / 詳目顯示

研究生: 林勇辰
Yung-Chen Lin
論文名稱: 反應式離子束濺鍍法沉積之氧化銅/氧化亞銅薄膜特性分析
Growth and characterization of copper (I, II) oxide thin films prepared by reactive ion beam sputter deposition
指導教授: 黃鶯聲
Ying-Sheng Huang
趙良君
Liang -Chiun Chao
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: 氧化銅氧化亞銅反應式離子束濺鍍
外文關鍵詞: Cupric oxide(CuO), Cuprous oxide(Cu2O), reactive ion beam sputter deposition
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此研究以反應式離子束濺鍍法於SiO2/Si基版及石英基板上沉積氧化銅/氧化亞銅薄膜,探討氬/氧流量及基板溫度對所沉積氧化銅/氧化亞銅薄膜之影響。研究結果顯示在300℃或400℃所沉積之氧化銅/氧化亞銅薄膜有相同的趨勢,當氬氧比例為2:1時,會得到多晶CuO薄膜,薄膜表面平整。當氧氣部分流量3:1至4:1時,會形成混相的CuO及Cu2O薄膜。當氬氧比例為5:1至7:1時,會得結晶性佳且表面平整的多晶Cu2O薄膜。在氬氧比例8:1以上時,會形成Cu及Cu2O的薄膜,並於薄膜表面成長出柱狀Cu2O結構,推測是因氧氣的缺乏,導致Cu的過量,使得Cu成為成核點,因而形成柱狀Cu2O結構。實驗所得之CuO薄膜為間接能隙半導體,能隙約為1.36 eV,而Cu2O薄膜為直接能隙半導體,能隙約為2.46 eV,CuO薄膜電阻率大於18000 ohmic-cm而Cu2O薄膜電阻率為5000 ohmic-cm。


Copper oxide (CuO) and cuprous oxide (Cu2O) have been successfully deposited by reactive ion beam sputter deposition at 300 ~ 400℃ with argon (Ar) to oxygen (O2) ratio from 2:1 ~ 14:1. Experimental results show that with an Ar:O2 ratio of 2:1, single phase polycrystalline CuO thin films are obtained. As the Ar:O2 ratio reaches 3:1 ~ 4:1 , mixed CuO and Cu2O are found. Further increasing Ar:O2 ratio to 5:1 ~ 7:1 results in single phase polycrystalline Cu2O. As Ar:O2 reaches 8:1 and higher, the thin film is composed of mixed Cu2O and Cu covered with Cu2O nanorods. CuO thin film exhibits an indirect bandgap of 1.36 eV, while the Cu2O shows a direct bandgap of 2.46 eV. The resistivity of CuO and Cu2O deposited at 400oC were >18000 ohmic-cm and 5000 ohmic-cm, respectively. The formation of the Cu2O nanrod at high argon partial flow rate may due to the presence of excess copper that act as nucleation sites.

目錄 中文摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1離子束濺鍍原理 3 2-2薄膜成長機制 4 2-3銅、氧化銅、氧化亞銅結構及特性簡介 6 2-3-1 銅(Cu, Copper) 6 2-3-2 氧化銅(CuO, Cupric oxide) 6 2-3-3氧化亞銅(Cu2O, Cuprous oxide) 6 2-4 氧化亞銅薄膜成長方式 8 第三章 實驗步驟與量測方法 14 3-1 實驗流程 14 3-2 特性分析儀器 17 3-2-1場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM) 17 3-2-2 X-ray繞射法(X-ray diffraction, XRD) 18 3-2-3拉曼光譜法(Micro-Raman spectroscopy) 20 3-2-4穿透率量測 (Transmittance measurement) 21 3-2-5四點探針量測(Four-point probe measurement) 23 第四章 實驗結果與討論 24 4-1不同溫度及氬氧比例沉積之氧化銅/氧化亞銅薄膜 24 4-1-1 X-ray繞射分析 24 4-1-2 表面形貌分析 29 4-1-3 Raman分析 36 4-2單相氧化銅/氧化亞銅薄膜之光電特性 38 4-2-1 X-ray繞射分析 38 4-2-2穿透率分析CuO及Cu2O薄膜 39 4-2-3 四點探針量測 42 第五章 結論與未來展望 43 參考文獻 45

參考文獻
[1] L. O. Grondahl, and P. H. Geiger, “A new electronic rectifier,” J. Am. Inst. Electric. Eng., Vol. 46, p. 215, 1927.
[2] L. O. Grondahl, Resarch Laboratory, Union Switch and Signal Company, Swissvale, Pennsylvania, “The copper-cuprous-oxide rectifier and photoelectric cell,” Rev. Mod. Phys., Vol. 5, pp. 141-168, 1933.
[3] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett., Vol. 88, 163502, 2006.
[4] S. Ishizuka, S. Kato, Y. Okamoto, and K. Akimoto, “Hydrogen treatment for polycrystalline nitrogen-doped Cu2O thin film,” J. Cryst. Growth, Vol. 237-239, pp. 616-620, 2002.
[5] E. Fortnato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Goncalves, S. K. Park, and C. S. Hwang, “Thin-film transistors based on p-type Cu2O thin film produced at room temperature,” Appl. Phys. Lett., Vol. 96, 192102, 2010.
[6] A. Sivasankar Reddy, G. Venkata Rao, S. Uthanna, and P. Sreedhara Reddy, “Structure and optical studies on dc reactive magnetron sputtered Cu2O films,” Mater. Lett., Vol. 60, pp. 1617-1621, 2006.
[7] A. O. Musa, T. Akomolafe, and M. J. Carter, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells, Vol. 51, pp. 305-316, 1998.
[8] J. H. Hsieh, P. W. Kuo, K. C. Peng, S. J. Liu, J. D. Hsueh, and S. C. Chang, “Opto-electronic properties of sputter-deposited Cu2O films treated with rapid thermal annealing,” Thin Solid Films, Vol. 516, pp. 5449-5453, 2008.
[9] T. Mahalingam, J. S. P. Chitra, J. P. Chu, H. Moon, H. J. Kwon, and Y. D. Kim, “Photoelectrochemical solar cell studies on eletroplated cuprous oxide thin films,” J Mater Sci: Mater Electron, Vol. 17, pp. 519-523, 2006.
[10] Y. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, L. Gong, J. Chen, P. Liu, and Y. Tong, “Electrochemical synthesis if hierarchical Cu2O stars with enhanced photoelectrochemical properties,” Electrrochim. Acta, Vol. 62, pp. 1-7, 2012.
[11] T. Mahalingam, J. S. P. Chitra, J. P. Chu, S. Velumani, and P. J. Sebastian, “Structure and annealing studies of potentiostatically deposited Cu2O thin films,” Sol. Energy Mater. Sol. Cells, Vol. 88, pp. 209-216, 2005.
[12] Y. S. Chaudhary, A. Agrawal, R. Shrivastav, V. R. Satangi, and S. Dass, “A study in the photoelectrochemical properties of copper oxides thin films,” Int. J. Hydrogen Energy, Vol. 29, pp. 131-134, 2004.
[13] M. Ristov, GJ. Sinadinovski, and M. Mitreski, “Chemically deposited Cu2O thin film as an oxygen pressure sensor,” Thin Solid Films, Vol. 167, pp. 309-316, 1988.
[14] A. S. Reddy, S. Uthanna, and P. S. Reddy, “Properties of dc magnetron souttered Cu2O film prepared at different sputtering pressures,” Appl. Surf. Sci., Vol. 253, pp. 5287-5292, 2007.
[15] Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p-type Cu2O films by nitrogen doping,” Appl. Phys. Lett., Vol. 94, 022111, 2009.
[16] H. J. Li, C. Y. Pu, C. Y. Ma, Sh. Li, W. J. Dong, S.Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N-doped Cu2O films,” Thin Solid Films, Vol. 520, pp. 212-216, 2011.
[17] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[18] S. M. Kane and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, No. 2, pp. 171-174, 1979.
[19] S. B. Krupanidhi, H. Hu and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, No. 1, pp. 376-388, 1992.
[20] C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some oxide films prepared by ion beam deposition,” Thin Solid Films, Vol. 290-291, pp. 88-93, 1996.
[21] L. Davis, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid Films, Vol. 236, p.1, 1993.
[22] H. L. Hartnagel, A.K. Jain and C. Jagadish, ”Semiconducting transparent thin films”, Inst. of Physics Pub, Philadelphia, p.181, 1995.
[23] K. N. Tu, J. W. Mayer, and L. C..Feldman, “Electronic thin film science”, Macmillan Publishing Co., New York, 1992.
[24] M. Ohring, “The materials science of thin films,” Academic Press, Boston, pp.197-224, 1992.
[25] A. M. B. Goncalves, L. C. Campos, A. S. Ferlauto, and R. G. Lacerda, “On the growth and electrical characterization of CuO nanowires by thermal oxidation,” J. Appl. Phys., Vol. 106, 034303, 2009.
[26] M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta, and J. V. Yakhmi, “Growth and branching of CuO nanowires by thermal oxidation of copper,” J. Crystal Growth, Vol. 289, pp. 670-675, 2006.
[27] J. T. Chen, F. Zhang, J. Wang, G. A. Zhanh, B. B. Miao, X. Y. Fan, and P. X. Yan, “CuO nanowires synthesized by thermal oxidation route,” J. Alloys Compd., Vol. 454, pp. 268-273, 2008.
[28] C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. cells, Vol. 95, pp. 2848-2854, 2011.
[29] M. R. Johan, M. S. M. Suan, N. L. Hawari, and H. A. Ching, “Annealing effects on the properties of copper oxide thin films prepared by chemical deposition,” Int. J. Electrochem. Sci., Vol. 6, pp. 6094-6104, 2011.
[30] J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, and G. A. Sawatzky, “Electronic structure of Cu2O and CuO,” Phys. Rev. B, Vol. 38, pp. 322-330, 1988.
[31] J. M. Zuo, M. Kim, M. O’Keeffe, and J. C. K. Spence, “Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O,” Nature, Vol. 401, pp. 49-52, 1999.
[32] Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” App. Phys. Lett., Vol. 86, 061901, 2005.
[33] H. Zhu, J. Zhang, C. Li, F. Peng, T. Wang, and B. Huang, “Cu2O thin films deposited by reactive direct current magnetron sputtering,” Thin Solid Films, Vol. 517, pp. 5700-5704, 2009.
[34] Y. S. Lee, M. T. Winkier, S. C. Siah, R. Btandt, and T. Buonassisi, “Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering,” Appl. Phys. Lett., Vol. 98, 192115, 2011.
[35] L. Zhang, L. McMillon, and J. McNatt, “Gas-dependent bandgap and electrical conductivity of Cu2O thin films,” Sol. Energy Mater. Sol. Cells, Vol. 108, pp. 230-234, 2013.
[36] J. Tauc, R. Griogorovici and A. Vaucu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi., Vol. 15, pp. 627-637, 1966.
[37] A. Gulino, P. Dapporto, P. Rossi, and I. Fragala, “A novel self-generating liquid MOCVD precursor for Co3O4 thin films,” Chem. Mater., Vol. 15, pp. 3748-3752, 2003.
[38] S. Fujuhara, Y. Ogawa, and A. Kasai, “Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing,” Chem. Mater., Vol. 16, pp. 2965-2968, 2004.
[39] S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. C. Hung, S. J. Young, and B. R. Huang, “A CuO nanowire infrared photodetector,” Sens. Actuators, A, Vol. 171, pp. 207-211, 2011.
[40] H. Gao, J. Zhang, M. Li, K. Liu, D. Guo, and Y. Zhang, “Evaluating the electric property of different crystal faces and enhancing the Raman scattering of Cu2O microcrystal by depositing Ag on the surface,” Curr. Appl. Phys., Vol. 13, pp. 935-939, 2013.
[41] H. Solache-Carranco, G. Juarez-Diaz, A. Esparza-Garcia, M. Briseno-Garcia, M. Galvan-Arellano, J. Martinez-Juarez, G. Romero-Paredes, and R. Pena-Sierra, “Photoluminescence and X-ray diffraction studies on Cu2O,” J. Lumin., Vol. 129, pp. 1483-1487, 2009.

無法下載圖示 全文公開日期 2018/06/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE