簡易檢索 / 詳目顯示

研究生: 許宏彬
Hung-pin Hsu
論文名稱: 含銻及氮之III-V族化合物薄膜及量子井結構光學特性研究
Optical Characterization of Antimony and/or Nitrogen Containing III-V Thin Films and Multiple Quantum Well Structures
指導教授: 黃鶯聲
Ying-sheng Huang
口試委員: 孫澄源
Cherng-yuan Sun
程光蛟
Kwong-kau Tiong
陳永芳
Yang-fang Chen
林浩雄
Hao-hsiung Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 118
中文關鍵詞: 砷銻氮化鎵表面光電壓光譜壓電調制光激發光譜光子調制氮磷化銦鎵砷銻化鎵砷化銦鎵(銻)量子井非接觸式電場調制
外文關鍵詞: photoreflectance, contactless electroreflectance, piezoreflectance, surface photovoltage spectroscopy, photoluminescence, GaAsSbN, InGaPN, GaAsSb, InGaAs(Sb), quantum well
相關次數: 點閱:337下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用光子調制、非接觸式電場調制、光子穿透、表面光電壓光譜、波長調制表面光電壓光譜及光激發光譜研究含Sb及N化合物GaAsSbN及InGaPN薄膜、GaAsSb/GaAs、InGaAs(Sb)/GaAs量子井結構之光學特性。主要內容包含:
利用PL及PR量測技術來探討GaAs0.909Sb0.07N0.021的熱退火光學特性,從低溫的PL光譜顯示,熱退火處理可改善樣品發光效率。從PR可觀察到因受應力所造成的重電洞及輕電洞分裂量減少,此乃因熱退火溫度增高可使薄膜中所受應力減小。另外也觀察到退火後能隙藍移,此乃因熱退火可使薄膜的成份均勻性及N的次鄰接原子改變。
使用表面光電壓光譜量測不同N成份的In0.176Ga0.824P1-yNy (y = 1.5% - 8.7%)成長於GaP基板薄膜,因為加入N後使材料從間接能隙轉變為直接能隙半導體,從實驗結果中顯示,利用一個二次方程式來描述含N化合物的能隙縮減僅在含少量N成份時適用。同時我們也利用極化的PzR及PR光譜研究成長於GaAs基板的In0.54Ga0.46P1-xNx (y = 0% - 2%)薄膜,探討其光學非對稱性質,另外在N成份高於0.5%的樣品中,可觀測來自InGaPN/GaAs介面中第二型的躍遷訊號。
在GaAsSb/GaAs量子井實驗中,從PL結果顯示,成長過程中隨著用Sb界面保護的時間越長,其PL的強度增強,半高寬減小,從量子井結構躍遷及經由界面保護後樣品於比GaAs能隙稍低所多出來的訊號及其可能原因也加以探討。於成長中控制不同Sb/V流量比所成長InGaAs(Sb)/GaAs量子井中,從CER結果得到量子井躍遷訊號紅移及PL發光位置紅移及半高寬增大,此原因為通入Sb後造成Sb摻入InGaAs/GaAs量子井所造成。在上述兩組含Sb量子井結構的低溫PL光譜均有觀測到S-shape的情形,此原因為加入Sb後所造成的載子localization或是在量子井介面的成份微擾效應。
最後,材料能隙相關躍遷及量子井中躍遷隨溫度變化的結果,利用Varshni及Bose-Einstein兩方程式來得到其相關的溫度參數並加以討論。


The optical properties of antimony and/or nitrogen containing alloys (GaAsSbN and InGaPN) and multiple quantum wells (MQWs) structures (GaAsSb/GaAs, InGaAs(Sb)/GaAs) were characterized by photoreflectance (PR), contactless electroreflectance (CER), piezoreflectance (PzR), phototransmittance (PT), surface photovoltage spectroscopy (SPS), wavelength modulated surface photovoltage spectroscopy (WMSPS), and photoluminescence (PL).
Thermal annealing effects of a GaAs0.909Sb0.07N0.021 film grown on GaAs have been characterized. PL measurements show the evolution of luminescence feature upon thermal annealing treatment. The conduction to heavy-hole (HH) band and conduction to light-hole (LH) band transitions originated from the strained induced valence band splitting in GaAs0.909Sb0.07N0.021 layer have been observed by the PR measurements. The near band edge transition energies have reduced splitting of HH and LH bands with rising annealing temperature. Besides, near band edge transition energies blue-shifted with rising annealing temperature are attributed to both the improvement of composition homogeneity and the configuration changes of second-nearest-neighboring atoms to the N atoms.
In0.176Ga0.824P1-yNy (y = 1.5% - 8.7%) alloys grown on GaP substrate were characterized by SPS. The SPS also revealed that a transition from indirect to direct band gap is taking place for the N-incorporated samples and the quadratic correction for the band gap bowing is only applicable for low nitrogen containing samples.
Polarized PzR and PR spectra were employed to study band alignment in In0.54Ga0.46P1-yNy/GaAs (0% y 2%) heterostructures. The features near the band edge of InGaPN show strong polarization dependence, indicating the existence of some degree of ordering of these samples. The type II band alignment at the In0.54Ga0.46P1-yNy is concluded for the alloys with nitrogen content y larger than 0.5% based on the appearance of additional features below the band edge of GaAs. These features are attributed to the spatially indirect type II transitions in the vicinity of interface region between InGaPN and GaAs.
The effects of growth interruptions on the interfaces of GaAsSb/GaAs MQWs were studied. The PL spectra show peak location redshifted, luminescence intensity increased and narrowing of full width at half maximum (FWHM) with increasing Sb exposure interruption time. The features originated from different regions of the samples including interband transitions of MQWs, interfaces and GaAs were observed and identified through a detailed comparison of the obtained spectra and theoretical calculation. An additional feature has also been observed below the GaAs region in Sb exposure treated samples and the probable origin of this feature has been discussed.
The InGaAs(Sb)/GaAs double quantum wells (DQWs) structures grown with Sb assistance under different Sb/V ratios have been investigated. The interband transition energies were determined via a lineshape fit to the CER spectra and exhibied a slight redshift with the incorporation of Sb. The PL spectra show redshifted peak location with decreasing intensity and broadened FWHM with increasing Sb/V ratio during growth. The anomalous temperature dependence of PL spectra for Sb-containing QWs has been attributed to carrier localization effect resulted from the presence of Sb clusters and/or fluctuations in Sb composition at the QW interfaces.
The near band edge transition energies in thin film alloys and interband transition energies in MQWs are determined and their temperature dependences are analyzed by Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of the transition energies are evaluated and discussed.

Contents Abstract………………………………………………………………………………I Acknowledgements……………………………………………………………………V Contents………………………………………………………………………………VI Symbols and Abbreviations……………………………………………………… VIII List of Figures…...………………………………………………………………IX List of Tables…….………………………………………………………………XIII Chapter 1 Introduction….…………………………………………………………1 1.1 Introduction………………………………………………………………1 1.2 Outline of dissertation…………………………………………………5 Chapter 2 Techniques and theoretical analysis………………………………9 2.1 Sample description………………………………………………………9 2.2 Experimental techniques and setups…………………………………14 2.2.1 Modulation spectroscopy techniques……………………………………14 2.2.2 Surface photovoltage and wavelength modulated surface photovoltage spectroscopy………………………………………………………………………17 2.2.3 Photoluminescence………………………………………………………19 2.3 Theoretical analysis model………………………………………20 2.3.1 Modulation spectroscopy lineshape…………………………………20 2.3.2 Temperature dependence characteristics…………………………23 Chapter 3 Photoluminescence and photoreflectance study of annealing effects on GaAs0.909Sb0.07N0.021 layer grown by gas-source molecular beam epitaxy. ………………………………………………………………………………………29 3.1 Low temperature photoluminescence………………………………29 3.2 Temperature dependent photoreflectance………………………30 3.3 Summary………………………………………………………………34 Chapter 4 Surface photovoltage spectroscopy characterization of InGaPN alloys grown on GaP substrates……………………………………………………………………40 4.1 Room temperature surface phototvoltage spectroscopy…………………40 4.2 Temperature dependent surface photovoltage spectroscopy……………43 4.3 Summary……………………………………………………………………………45 Chapter 5 Evidence of type-II band alignment at the ordered InGaPN to GaAs heterointerface…………………………………………………………………52 5.1 Ansiotropic properties of InGaPN………………………………52 5.2 Type-II band alignment at InGaPN/GaAs heterointerface……54 5.3 Summary…………………………………………………………………57 Chapter 6 Photoluminescence and modulation spectroscopy study of the effects of growth interruptions on the interfaces of GaAsSb/GaAs multiple quantum wells………………………………………………………………………………65 6.1 Temperature dependent photoluminescence……………………65 6.2 Phototransmittance and wavelength modulated surface photovoltage spectroscopy……………………………………………………………………67 6.3 contactless electroreflectance spectroscopy………………71 6.4 Summary………………………………………………………………74 Chapter 7 Contactless electroreflectance and photoluminescence study of highly strained InGaAs(Sb) double quantum wells………………………………84 7.1 Temperature dependent photoluminescence……………………84 7.2 Temperature dependent contactless eletroreflectance……87 7.3 Summary………………………………………………………………89 Chapter 8 Conclusion……………………………………………………………99 References…………………………………………………………………………103 Bibliography………………………………………………………………………114 Publications ……………………………………………………………………115

References:
[1] Kondow, M., K. Uomi, A. Niwa, T. Kitatani, S. Wataniki, and Y. Yazama, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance”, Jpn. J. Appl. Phys. Part 1, Vol.35, No.2B, pp.1273-1275 (1996).
[2] Shan, W., W.Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys”, Phys. Rev. Lett., Vol.82, No.6, pp.1221-1224 (1999).
[3] Uesugi, K., N. Morooka, and I. Suemune, “Reexamination of N Composition Dependence of Coherently Grown GaNAs Band Gap Energy with High-Resolution X-ray Diffraction Mapping Measurements”, Appl. Phys. Lett., Vol.74, No.9, pp.1254-1256 (1999).
[4] Bentoumi, G., Z. Yaiche, R. Leonelli, J.-N. Beaudry, P. Desjardins, and R. A. Masut, “Low-Temperature Emission in Dilute GaAsN Alloys Grown by Metalorganic Vapor Phase Epitaxy”, J. Appl. Phys., Vol.103, No.6, pp.063526-1~063526-5 (2008).
[5] Cheah, W. K., W. J. Fan, S. F. Yoon, W. K. Loke, R. Liu, and A. T. S. Wee, “Interpretation of an Anomalous Peak in Low-Temperature Photoluminescence Measurements of Bulk GaAs1–xNx on GaAs”, J. Appl. Phys., Vol.99, No.10, pp.104908-1~104908-5 (2006).
[6] Kitatani, T., K. Nakahara, M. Kondow, K. Uomi, and T. Kitatani, “A 1.3-µm GaInNAs/GaAs Single-Quantum-Well Laser Diode with a High Characteristic Temperature over 200 K”, Jpn. J. Appl. Phys. Part 2, Vol.39, No.2A, pp.L86-L87 (2000).
[7] Tu, C. W., “III-N-V Low-Bandgap Nitrides and Their Device Applications”, J. Phys.: Condens. Matter, Vol.13, No.32, pp.7169-7182 (2001).
[8] Nishikawa, A., Y. G. Hong, and C. W. Tu, “Temperature Dependence of Optical Properties of Ga0.3In0.7NxAs1-x Quantum Dots Grown on GaAs (001)*”, J. Vac. Sci. Technol. B, Vol.22, No.3, pp.1515-1517 (2004).
[9] Ma, B. S., W. J. Fan, Y. X. Dang, W. K. Cheah, W. K. Loke, W. Liu, D. S. Li, S. F. Yoon, D. H. Zhang, H. Wang, and C. H. Tung, “GaInNAs Double-Barrier Quantum Well Infrared Photodetector with the Photodetection at 1.24 m”, Appl. Phys. Lett., Vol.91, No.5, pp.051102-1~051102-3 (2007).
[10] Lu, S. L., L. F. Bian, M. Uesugi, H. Nosho, A. Takeuchi, and Z. C. Niu, “Localized and Free Exciton Spin Relaxation Dynamics in GaInNAs/GaAs Quantum Well”, Appl. Phys. Lett., Vol.92, No.5, pp.051908-1~051908-3 (2008).
[11] Bian, L. F., D. S. Jiang, and S. L. Lu, “Optical Investigation on the Annealing Effect and its Mechanism of GaInAs/GaNAs Quantum Wells”, J. Cryst. Growth, Vol.253, No.1-4, pp.155-160 (2003).
[12] Fischer, M., M. Reinhardt, and A. Forchelm, “GaInAsN/GaAs Laser Diodes Operating at 1.52 µm”, Electron. Lett., Vol.36, No.14, pp.1208-1209 (2000).
[13] Ungaro, G., G. Le Roux, R. Teissier, and J. C. Harmand, “GaAsSbN: A New Low-Bandgap Material for GaAs Substrates”, Electron. Lett., Vol.35, No.15, pp.1246-1248 (1999).
[14] Harmand, J. C., G. Ungaro, L. Largeau, and G. Le Roux, “Comparison of Nitrogen Incorporation in Molecular-Beam Epitaxy of GaAsN, GaInAsN, and GaAsSbN”, Appl. Phys. Lett., Vol.77, No.16, pp.2482-2484 (2000).
[15] Harmand, J. C., G. Ungaro, J. Ramos, E. V. K. Rao, G. Saint-Girons, R. Teissier, G. Le Roux, L. Largeau, and G. Patriarche, “Investigations on GaAsSbN/GaAs Quantum Wells for 1.3-1.55 μm Emission”, J. Cryst. Growth, Vol.227-228, pp.553-557 (2001).
[16] Harmand, J. C., A, Caliman, E. V. K. Rao, L. Largeau, J. Ramos, R. Teissier, L. Travers, G. Ungaro, B. Theys, and I. F. L. Dias, “GaNAsSb: How Does It Compare with Other Dilute III–V-Nitride Alloys?”, Semicond. Sci. Technol., Vol.17, No.8, pp.778-784 (2002).
[17] Henini, H. (ed), Dilute Nitride Semiconductors, Elsvier, New York, pp.471-493 (2005).
[18] Wicaksono, S., S. F. Yoon, W. K. Loke, K. H. Tan, K. L. Lew, M. Zegaoui, J. P. Vilcot, D. Decoster, and J. Chazelas, “Effect of Growth Temperature on Defect States of GaAsSbN Intrinsic Layer in GaAs/GaAsSbN/GaAs Photodiode for 1.3 m Application”, J. Appl. Phys., Vol.102, No.4, pp.044505-1~044505-7 (2007).
[19] Tan, K. H., S. F. Yoon, W. K. Loke, S. Wicaksono, K. L. Lew, A. Sthr, O. Ecin, A. Poloczek, A. Malcoci, and D. Jger, “High-Speed Picosecond Pulse Response GaNAsSb p-i-n Photodetectors Grown by RF Plasma-Assisted Nitrogen Molecular Beam Epitaxy”, Appl. Phys. Lett., Vol.90, No.18, pp.183515-1~183515-3 (2007).
[20] Luo, H., J. A. Gupta, and H. C. Liu, “1.55 m GaNAsSb Photodetector on GaAs”, Appl. Phys. Lett., Vol.86, No.21, pp.211121-1~211121-3 (2005).
[21] Yarekha, D. A., S. Godey, X. Wallart, H. Colder, M. Zaknoune, and F. Mollot, “MBE Growth of Heavily Carbon Doped GaAsSb on InP for Heterojunction Bipolar Transistor Applications”, J. Cryst. Growth, Vol.301-302, pp.217-220 (2007).
[22] Liu, H. G., J. Q. Wu, N. Tao, A. V. Girth, E. M. Griswold, T. W. MacElwee, and C. R. Bolognesi, “High-Performance InP/GaAsSb/InP DHBTs Grown by MOCVD on 100 mm InP Substrates using PH3 and AsH3”, J. Cryst. Growth, Vol.267, No.3-4, pp.592-597 (2004).
[23] Xu, X. G., J. Hu, S. P. Watkins, N. Matine, M. W. Dvorak, and C. R. Bolognesi, “Metalorganic Vapor Phase Epitaxy of High-Quality GaAs0.5Sb0.5 and Its Application to Heterostructure Bipolar Transistors”, Appl. Phys. Lett., Vol.74, No.7, pp.976-978 (1999).
[24] Yan, B. P., C. C. Hsu, X. Q. Wang, and E. S. Yang, “Current Transport Mechanism in InGaP/GaAsSb/GaAs Double-Heterojunction Bipolar Transistors”, Appl. Phys. Lett., Vol.85, No.17, pp.3884-3886 (2004).
[25] Dvorak, M. W., C. R. Bolognesi, O. J. Pitts, and S. P. Watkins, “300 GHz InP/GaAsSb/InP Double HBTs with High Current Capability and BVCEO≧6 V”, IEEE Electron Device Lett., Vol.22, No.8, pp.361-363 (2001).
[26] Watkins, S. P., O. J. Pitts, C. Dale, X. G. Xu, M. W. Dvorak, N. Matine, and C. R. Bolognesi, “Heavily Carbon-doped GaAsSb Grown on InP for HBT Applications”, J. Cryst. Growth, Vol.221, No.1-4, pp.59-65 (2000).
[27] Bolognesi, C. R., M. W. Dvorak, N. Matine, O. J. Pitts, and S. P. Watkins, “Ultrahigh Performance Staggered Lineup (“Type-II”) InP/GaAsSb/InP NpN Double Heterojunction Bipolar Transistor”, Jpn. J. Appl. Phys. Part 1, Vol.41, No.2B, pp.1131-1135 (2002).
[28] Cunnningham, J. E., M. Dinu, J. Shah, F. Quochi, D. Kilper, W. Y. Jan, M. D. Williams, A. Mills, and W. E. Henderson, “Growth and Optical Properties of GaAsSb Quantum Wells for 1.3 µm VCSELs”, J. Vac. Sci. Technol. B, Vol.19, No.5, pp.1948-1952 (2001).
[29] Liu, P. W., M. H. Lee, H. H. Lin, and J. R. Chen, “Low-Threshold Current GaAsSb/GaAs Quantum Well Lasers Grown by Solid Source Molecular Beam Epitaxy”, Electron. Lett., Vol.38, No.22, pp.1354-1355 (2002).
[30] Liu, P. W., G. H. Liao, and H. H. Lin, “1.3 GaAs/GaAsSb Quantum Well Laser Grown by Solid Source Molecular Beam Epitaxy”, Electron. Lett., Vol.40, No.3, pp.177-178 (2004).
[31] Quochi, F., D. C. Kilper, J. E. Cunningham, M. Dinu, and J. Shah, “Continuous-wave Operation of a 1.3-μm GaAsSb-GaAs Quantum-Well Vertical-Cavity Surface-Emitting Laser at Room Temperature”, IEEE Photonics Technol. Lett., Vol.13, No.9, pp.921-923 (2001).
[32] Dinu, M., J. E. Cunningham, F. Quochi, and J. Shah, “Optical Properties of Strained Antimonide-Based Heterostructures”, J. Appl. Phys., Vol.94, No.3, pp.1506-1512 (2003).
[33] Sun, X., S. Wang, J. Hsu, R. Sidhu, X. G. Zheng, X. Li, J. C. Campbell, and A. L. Holmes, “GaAsSb: A Novel Material for Near Infrared Photodetectors on GaAs Substrates”, IEEE J. Sel. Top. Quantum Electron., Vol.8, No.4, pp.817-822 (2002).
[34] Sun, X., J. Hsu, X. G. Zheng, J. C. Campbell, and A. L. Holmes, “GaAsSb Resonant-Cavity-Enhanced Photodetector Operating at 1.3 μm”, IEEE Photonics Technol. Lett., Vol.14, No.5, pp.681-683 (2002).
[35] Yanada, M., T. Anan, K. Tokutome, A. Kamei, K. Nishi, and S. Sugou, “Low-Threshold Operation of 1.3-μm GaAsSb Quantum-Well Lasers Directly Grown on GaAs Substrates”, IEEE Photonics Technol. Lett., Vol.12, No.7, pp.774-776 (2000).
[36] Anan, T., M. Yamada, K. Nishi, K. Kurihara, K. Tikutome, A. Kamei, and S. Sugou, “Continuous-Wave Operation of 1.30 µm GaAsSb/GaAs VCSELs”, Electron. Lett., Vol.37, No.9, pp.566-567 (2001).
[37] Yano, M., M. Ashida, A. Kawaguchi, Y. Iwai, and M. Inoue, “Molecular-Beam Epitaxial Growth and Interface Characteristics of GaAsSb on GaAs Substrates”, J. Vac. Sci. Technol. B, Vol.7, No.2, pp.199-203 (1989).
[38] Ryu, S., and P. D. Dapkus, “Highly Strained InGaAs QW VCSEL with Lasing Wavelength at 1.22 µm”, Electron. Lett., Vol.37, No.3, pp.177-178 (2001).
[39] Salomonsson, F., C. Asplund, P. Sungdgren, G. Plaine, S. Mogg, and M. Hammar, “Low-Threshold, High-Temperature Operation of 1.2 µm InGaAs Vertical Cavity Lasers”, Electron. Lett., Vol.37, No.15, pp.957-958 (2001).
[40] Bugge, F., U. Zeimer, M. Sato, M. Weyers, and G. Trnkle, “MOVPE Growth of Highly Strained InGaAs/GaAs Quantum Wells”, J. Cryst. Growth, Vol.183, No.4, pp.511-518 (1998).
[41] Otsubo, K., Y. Nishijima, T. Uchida, H. Shoji, K. Nakajima, and H. Ishikawa, “1.3 µm InGaAs/InAlGaAs Strained Quantum Well Lasers on InGaAs Ternary Substrates”, Jpn. J. Appl. Phys. Part 2, Vol.38, No.3B, pp.L312-L314 (1999).
[42] Jiang, D. S., Y. H. Qu, H. Q. Ni, D. H. Wu, Y. Q. Xu, and Z. C. Niu, “Optical Properties of InGaAs/GaAs Quantum Wells Grown by Sb-Assisted Molecular Beam Epitaxy”, J. Cryst. Growth, Vol.288, No.1, pp.12-17 (2006).
[43] Kuo, H. C., Y. H. Chang, Y. A. Chang, F. I. Lai, J. T. Chu, M. Y. Tsai, and S. C. Wang, “Single-Mode 1.27 m InGaAs:Sb-GaAs-GaAsP Quantum Well Vertical Cavity Surface Emitting Lasers”, IEEE J. Sel. Top. Quantum Electron., Vol.11, No.1, pp.121-126 (2005).
[44] Chang, Y. H., H. C. Kuo, Y. A. Chang, J. T. Chu, M. Y. Tsai, and S. C. Wang, “10Gbps InGaAs:Sb-GaAs-GaAsP Quantum Well Vertical Cavity Surface Emitting Lasers with 1.27 m Emission Wavelength”, Jpn. J. Appl. Phys. Part 1, Vol.44, No.4B, pp.2556-2559 (2005).
[45] Chang, Y. A., J. T. Chu, C. T. Ko, H. C. Kuo, C. F. Lin, and S. C. Wang, “MOCVD Growth of Highly Strained 1.3 μm InGaAs:Sb/GaAs Vertical Cavity Surface Emitting Laser”, J. Cryst. Growth, Vol.287, No.2, pp.550~553 (2006).
[46] Xin, H. P., C. W. Tu, Y. Zhang, and A. Mascarenhas, “Effects of Nitrogen on the Band Structure of GaNxP1–x Alloys”, Appl. Phys. Lett., Vol.76, No.10, pp.1267-1269 (2000).
[47] Chtourou, R., F. Bousbih, S. Ben Bouzid, F. F. Charfi, J. C. Harmand, G. Ungaro, and L. Largeau, “Effect of Nitrogen and Temperature on the Electronic Band Structure of GaAs1–xNx Alloys”, Appl. Phys. Lett., Vol.80, No.12, pp.2075-2077 (2002).
[48] Misiewicz, J., R. Kudrawiex, K. Ryczko, G. Sęk, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance Investigations of the Energy Level Structure in GaInNAs-Based Quantum Wells”, J. Phys.: Condens. Matter, Vol.16, No.31, pp.S3071-S3094 (2004).
[49] Odnoblyudov, V. A. and C. W. Tu, “Optical Properties of InGaNP Quantum Wells Grown on GaP (100) Substrates by Gas-Source Molecular Beam Epitaxy”, Appl. Phys. Lett., Vol.89, No.11, pp.111922-1~111922-3 (2006).
[50] Kaewket, D., S. Tungasmita, S. Sanorpim, F. Nakajima, N. Nakadan, T. Kimura, R. Katayama, and K. Onabe, “Photoluminescence and Photoluminescence-Excitation Spectroscopy of InGaPN/GaP Lattice-Matched Single Quantum Well Structures Grown by MOVPE”, J. Cryst. Growth, Vol.298, pp.531-535 (2007).
[51] Umeno, K., S. M. Kim, Y. Furukawa, H. Yonezu, and A. Wakahara, “Band Alignment of InGaPN/GaPN Quantum Well Structures on GaP and Si”, J. Cryst. Growth, Vol.301-302, pp.539-544 (2007).
[52] Biwa, G., H. Yaguchi, K. Onabe, and Y. Shiraki, “Photoluminescence and Photoluminescence-Excitation spectroscopy of GaPAsN/GaP Lattice-Matched Multiple Quantum Well Structures”, J. Cryst. Growth, Vol.195, No.1-4, pp.574-578 (1998).
[53] Xin, H. P., R. J. Welty, Y. G. Hong, and C. W. Tu, “Gas-Source MBE Growth of Ga(In)NP/GaP Structures and Their Applications for Red Light-Emitting Diodes”, J. Cryst. Growth, Vol.227-228, pp.558-561 (2001).
[54] Tu, C. W., H. P. Xin, M. Sopanen, and R. J. Welty, “Novel Optoelectric Materials: GaInNAs and Ga(In)NP”, The 13th Laser and Electro-Optics Society Annual Meeting, Rio Grande, Puerto Rico. Vol.2, pp.784-785 (2000).
[55] Hong, Y. G., F. S. Juang, M. H. Kim, and C. W. Tu, “Growth and Characterization of GaInNP Grown on GaAs Substrates”, J. Cryst. Growth, Vol.251, No.1-4, pp.437-442 (2003).
[56] Hong, Y. G., A. Nishikawa, and C. W. Tu, “Effect of Nitrogen on the Optical and Transport Properties of Ga0.48In0.52NyP1–y Grown on GaAs(001) Substrates”, Appl. Phys. Lett., Vol.83, No.26, pp.5446-5448 (2003).
[57] Welty, R. J., Y. G. Hong, H. P. Xin, K. Mochizuki, C. W. Tu, and P. M. Asbeck, K. Mochizuki, “Nitrogen Incorporation in GaInP for Novel Heterojunction Bipolar Transistors”, Proc. IEEE/Cornell Conference on High Performance Devices, Piscataway, NJ, pp.33-40 (2000).
[58] Cardona, M., Modulation Spectroscopy, Academic, New York, (1969).
[59] Hamakawa, Y. and T. Nishino, Optical Properties of Solids: New Developments, North-Holland, Amsterdam, p.255 (1970).
[60] Pollak, F. H., “Modulation Spectroscopy of Semiconductors and Semiconductor Microstructures”, Handbook on Semiconductors, Vol.2, ed. M. Ballanski, North-Holland, New York, pp.524-635 (1994).
[61] Yin, X. and F. H. Pollak, “Novel Contactless Mode of Electroreflectance”, Appl. Phys. Lett., Vol.59, No.18, pp.2305-2307 (1991).
[62] Yin, X., X. Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin, and C. W. Tu, “Nature of Band Bending at Semiconductor Surfaces by Contactless Electroreflectance”, Appl. Phys. Lett., Vol.60, No.11, pp.1336-1338 (1992).
[63] Shen, H., S. H. Pan, F. H. Pollak, and R. N. Sacks, “Electromodulation Mechanisms for the Uncoupled and Coupled States of a GaAs/Ga0.82Al0.18As Multiple-Quantum-Well Structure”, Phys. Rev. B, Vol.37, No.18, pp.10919-10922 (1988).
[64] Mathieu, H., J. Allgre, and B. Gil, “Piezomodulation Spectroscopy: A Powerful Investigation Tool of Heterostructures”, Phys. Rev. B, Vol.43, No.3, pp.2218-2227 (1981).
[65] Ho, C. H., H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design For Optical Characterization of Layer Semiconductors”, Rev. Sci. Instrum., Vol.75, No.4, pp.1098-1102 (2004).
[66] Xu, Z. and M. Gal, “Temperature Modulated Photoluminescence in Semiconductor Quantum Wells”, Superlattices Microstruct., Vol.12, No.3, pp.393-396 (1992).
[67] Huang, Y. S. and F. H. Pollak, “Non-Destructive, Room Temperature Characterization of Wafer-Sized III–V Semiconductor Device Structures using Contactless Electromodulation and Wavelength-Modulated Surface Photovoltage Spectroscopy”, Phys. Stat. Sol. (a), Vol.202, No.7, pp.1193-1207 (2005).
[68] Pollak, F. H. and H. Shen, “Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces/Interfaces and Devices”, Mater. Sci. Eng. R, Vol.10, No.7-8, pp.275-374 (1993).
[69] Misiewicz, J., P. Sitarek, G. Sęk, and R. Kudrawiec, “Semiconductor Heterostructures and Device Structures Investigated by Photoreflectance Spectrosopy”, Mater. Sci., Vol.21, No.3, pp.263-320 (2003).
[70] Shen, H., P. Parayanthal, Y. F. Lin, and F. H. Pollak, “New Normalization Procedure for Modulation Spectroscopy”, Rev. Sci. Instum., Vol.58, No.8, pp.1429-1432 (1987).
[71] Kronik, L. and Y. Shapira, “Surface Photovoltage Phenomena: Theory, Experiment, and Applications”, Surf. Sci. Rep., Vol.37, No.1-5, pp.1-206 (1999).
[72] Huang, Y. S., L. Malikova, F. H. Pollak, H. Shen, P. Pamulapati, and P. Newman, “Surface Photovoltage Spectroscopy, Photoreflectance, and Reflectivity Characterization of an InGaAs/GaAs/GaAlAs Vertical-Cavity Surface-Emitting Laser Including Temperature Dependence”, Appl. Phys. Lett., Vol.77, No.1, pp.37-39 (2000).
[73] Seraphin, B. O. and N. Bottka, “Band-Structure Analysis from Electro-Reflectance Studies”, Phys. Rev., Vol.145, No.2, pp.628-636 (1996).
[74] Aspnes, D. E. and A. A. Studna, “Schottky-Barrier Electroreflectance: Application to GaAs”, Phys. Rev. B, Vol.7, No.10, pp.4605-4625 (1973).
[75] Aspnes, D. E. and B. O. Seraphin, “Electric Field Effects in Optical and First-Derivative Modulation Spectroscopy”, Phys. Rev. B, Vol.6, No.8, pp.3158-3160 (1972).
[76] Aspnes, D. E., Handbook on Semiconductor Vol.2, ed. by T. S. Moss, North-Holland, New York. p.109 (1980).
[77] Yu, P. Y. and M. Cardona, “Fundamentals of Semiconductors : Physics and Materials Properties”, Springer, Berlin, p.312 (1996).
[78] Varshni, Y. P., “Temperature Dependence of Energy Gap in Semiconductors”, Physica (Amsterdam) Vol.34, No.1, pp.149-154 (1967).
[79] Via, L., S. Logothetidis, and M. Cardona, “Temperature Dependence of the Dielectric Function of Germanium”, Phys. Rev. B, Vol.30, No.4, pp.1979-1991 (1984).
[80] Lautenschlager, P., M. Garriga, S. Logothetidis, and M. Cardona, “Interband Critical Points of GaAs and Their Temperature Dependence”, Phys. Rev. B, Vol.35, No.17, pp.9174-9189 (1987).
[81] Lautenschlager, P., M. Garriga, and M. Cardona, “Temperature Dependence of the Interband Critical-Point Parameters of InP”, Phys. Rev. B, Vol.36, No.9, pp.4813-4820 (1987).
[82] Klar, P. J., H. Grnung, J. Koch, S. Schfer, K. Volz, W. Stolz, W. Heimbrodt, A. M. Kamal Saadi, A. Lindsay, and E. P. O’Reilly, “(Ga, In)(N, As)-Fine Structure of the Band Gap Due to Nearest-Neighbor Configurations of the Isovalent Nitrogen”, Phys. Rev. B, Vol.64, No.12, pp.121203-1~121203-4 (2001).
[83] Kudrawiec, R., E.-M. Pavelescu, J. Wagner, G. Sęk, J. Misiewicz, M. Dumitresccu, J. Konttinen, A. Gheorghiu, and M. Pessa,”Photoreflectance Evidence of Multiple Band Gaps in Dilute GaInNAs Layers Lattice-Matched to GaAs”, J. Appl. Phys., Vol.96, No.5, pp.2576-2579 (2004).
[84] Kudrawiec, R., E.-M. Pavelescu, J. Andrzejewski, J. Misiewicz, A. Gheorghiu, T. Jouhti, and M. Pessa, “The Energy-Fine Structure of GaInNAs/GaAs Multiple Quantum Wells Grown at Different Temperatures and Postgrown Annealed”, J. Appl. Phys., Vol.96, No.5, pp.2909-2913 (2004).
[85] Kurtz, S., J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam, “Structural Changes During Annealing of GaInAsN”, Appl. Phys. Lett., Vol.78, No.6, pp.748-750 (2001).
[86] Pavelescu, E.-M., J. Wagner, H. P. Komsa, T. T. Rantala, M. Dumitresccu, and M. Pessa, “Nitrogen Incorporation into GaInNAs Lattice-Matched to GaAs: The Effects of Growth Temperature and Thermal Annealing”, J. Appl. Phys., Vol.98, No.8, pp.083524-1~083524-4 (2005).
[87] Bian, L. F., D. S. Jiang, P. H. Tan, S. L. Lu, B. Q. Sun, L. H. Li, and J. C. Harmand, “Photoluminescence Characteristics of GaAsSbN/GaAs Epilayers Lattice-Matched to GaAs Substrates”, Solid State Commun., Vol.132, No.10, pp.707-711 (2004).
[88] Uesugi, K., I. Suemune, T. Hasegawa, T. Akutagawa, and T. Nakamura, “Temperature Dependence of Band Gap Energies of GaAsN Alloys”, Appl. Phys. Lett., Vol.76, No.10, pp.1285-1287 (2000).
[89] Lukic-Zrnic, R., B. P. Gorman, R. J. Cottier, T. D. Golding, C. L. Littler, and A. G. Norman, “Temperature Dependence of the Band Gap of GaAsSb Epilayers”, J. Appl. Phys., Vol.92, No.11, pp.6939-6941 (2002).
[90] Panish, M. B. and H. C. Casey, Jr, “Temperature Dependence of the Energy Gap in GaAs and GaP”, J. Appl. Phys., Vol.40, No.1, pp.163-167 (1969).
[91] Dumitras, Gh., H. Riechert, H. Porteanu, and F. Koch, “Surface Photovoltage Studies of InxGa1-xAs and InxGa1-xAs1-yNy Quantum Well Structures”, Phys. Rev. B, Vol.66, No.20, pp.205324-1~205324-8 (2002).
[92] McGill, L., J. W. Wu, and E. A. Fitzgerald, “Yellow-Green Strained-InGaP Quantum-Well Epitaxial”, J. Appl. Phys., Vol.95, No.12, pp.7561-7566 (2004).
[93] Xin, H. P., R. J. Welty, and C. W. Tu, “GaN0.011P0.989 Red Light-Emitting Diodes Directly Grown on GaP Substrates”, App. Phys. Lett., Vol.77, No.13, pp.1946-1948 (2000).
[94] Sanorpim, S., F. Nakajima, R. Katayama, N. Nakadan, T. Kimura, K. Onabe, and Y. Shiraki, “MOVPE Growth and Characterization of High-N Content InGaPN Alloy Lattice-Matched to GaP”, Phys. Stat. Sol. (c), Vol.0, No.7, pp.2773-2777 (2003).
[95] Bi, W. G. and C. W. Tu, “N Incorporation in InP and Band Gap Bowing of InNxP1–x”, J. Appl. Phys., Vol.80, No.3, pp.1934-1936 (1996).
[96] Pozina, G., I. Ivanov, B. Monemar, J. V. Thordson, and T. G. Andersson, “Properties of Molecular-Beam Epitaxy-Grown GaNAs from Optical Spectroscopy”, J. Appl. Phys., Vol.84, No.7, pp.3830-3835 (1998).
[97] Baillargeon, J. N., K. Y. Cheng, G. E. Hofler, P. J. Pearah, and K. C. Hsieh, “Luminescence Quenching and the Formation of the GaP1−xNx Alloy in GaP with Increasing Nitrogen Content”, Appl. Phys. Lett., Vol.60, No.20, pp.2540-2542 (1992).
[98] Bi, W. G. and C. W. Tu, “Bowing Parameter of the Band-Gap Energy of GaNxAs1–x”, Appl. Phys. Lett., Vol.70, No.12, pp.1608-1610 (1997).
[99] Hsu, H. P., Y. S. Huang, C. H. Wu, Y. K. Su, F. S. Juang, Y. G. Hong, and C. W. Tu, “The Structural and Optical Characterization of a New Class of Dilute Nitride Compound Semiconductors: GaInNP”, J. Phys.: Condens. Matter, Vol.16, No.31, pp.S3245- S3256 (2004).
[100] Wei, S. H. and A. Zunger, “Optical Properties of Zinc-Blende Semiconductor Alloys: Effects of Epitaxial Strain and Atomic Ordering”, Phys. Rev. B, Vol.49, No.20, pp.14337-14351 (1994).
[101] Su, Y. K., C. H. Wu, S. H. Hsu, S. J. Chang, W. C. Chen, Y. S. Huang, and H. P. Hsu, “Observation of Spontaneous Ordering in the Optoelectronic Material GaInNP”, Appl. Phys. Lett., Vol.84, No.8, pp.1299-1301 (2004).
[102] Lin, K. I., J. Y. Lee, T. S. Wang, S. H. Hsu, J. S. Hwang, Y. G. Hong, and C. W. Tu, “Effects of Weak Ordering of InGaPN”, Appl. Phys. Lett., Vol.86, No.21, pp.211914-1~211914-3 (2005).
[103] Izadifard, M., T. Mtchedlidze, I. Vorona, W. M. Chen, I. A. Buyanova, Y. G. Hong, and C. W. Tu, “Band Alignment in GaInNP/GaAs Heterostructure Grown by Gas-Source Molecular-Beam Epitaxy”, Appl. Phys. Lett., Vol.86. No.26, pp.261904-1~261904-3 (2005).
[104] Shirakata, S., M. Kondow, and T. Kitatani, “Photoluminescence and Photoreflectance of GaInNAs Single Quantum Wells”, Appl. Phys. Lett., Vol.79, No.1, pp.54-56 (2001).
[105] Chen, T. H., Y. S. Huang, D. Y. Lin, and K. K. Tiong, “Temperature Dependent Photoreflectance and Photoluminescence Characterization of GaInNAs/GaAs Single Quantum Well Structures”, J. Appl. Phys., Vol.96, No.11, pp.6298-6305 (2004).
[106] Kim, C. K. and Y. H. Lee, “Thermal Characteristics of Optical Gain for GaInNAs Quantum Wells at 1.3 µm”, Appl. Phys. Lett., Vol.79, No.19, pp.3038-3040 (2001).
[107] Manasreh, M. O., D. J. Friedman, W. Q. Ma, C. L. Workman, C. E. George, and G. J. Salamo, “Photoluminescence of Metalorganic-Chemical-Vapor- Deposition-Grown GaInNAs/GaAs Single Quantum Wells”, Appl. Phys. Lett., Vol.82, No.4, pp.514-516 (2003).
[108] Kudrawiec, R., G. Sęk, J. Misiewicz, L. H. Li, and J. C. Harmand, “Influence of Carrier Localization on Modulation Mechanism in Photoreflectance of GaAsN and GaInAsN”, Appl. Phys. Lett., Vol.83, No.7, pp.1379-1381 (2003).
[109] Hoffmann, A., R. Heitz, A. Kaschner, T. Luttgert, H. Born, A. Y. Qgorov, and H. Riechert, “Localization Effects in InGaAsN Multi-Quantum Well Structures”, Mater. Sci. Eng. B, Vol.93, No.1-3, pp.55-59 (2002).
[110] Hybertsen, M. S., “Role of Interface Strain in a Lattice-Matched Heterostructure”, Phys. Rev. Lett., Vol.64, No.5, pp.555-558 (1990).
[111] Nelson, J. S., S. R. Kurtz, L. R. Dawson, and J. A. Lott, “Demonstration of the Effects of Interface Strain on Band Offsets in Lattice-Matched III-V Semiconductor Superlattices”, Appl. Phys. Lett., Vol.57, No.6, pp.578-580 (1990).
[112] Dumitras, Gh. and H. Riechert, “Determination of Band Offsets in Semiconductor Quantum Well Structures Using Surface Photovoltage”, J. Appl. Phys., Vol.94, No.6, pp.3955-3959 (2003).
[113] Bastard, G., “Superlattice Band Structure in the Envelope-Function Approximation”, Phys. Rev. B, Vol.24, No.10, pp.5693-5697 (1981).
[114] Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures, Halsted Press, New York, p.64 (1988).
[115] Chuang, S. L., Physics of Optoelectronic Devices, John Wiley and Sons, New York, p.144 (1995).
[116] Chen, T. T., C. H. Chen, W. Z. Cheng, W. S. Su, M. H. Ya, Y. F. Chen, P. W. Liu, and H. H. Lin, “Optical Studies of Strained Type II GaAs0.7Sb0.3/GaAs Multiple Quantum Wells”, J. Appl. Phys., Vol.93, No.12, pp.9655-9658 (2003).
[117] Chiu, Y. S., M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of Photoluminescence in Type-II GaAsSb/GaAs Multiple Quantum Wells”, J. Appl. Phys., Vol.92, No.10, pp.5810-5813 (2002).
[118] Hellwege, K. H. (ed), Numerical Data and Functional Relationships in Science and Technology (Landolt Bornstein New Series Group III vol 17a), Springer, Berlin (1982).
Hellwege, K. H. (ed), Numerical Data and Functional Relationships in Science and Technology (Landolt Bornstein New Series Group III vol 22a) , Springer, Berlin (1982).
[119] Tober, R. L., J. Pamulapati, J. E. Oh, and P. K. Bhattacharya, “Modulation Effects Near the GaAs Absorption Edge”, J. Appl. Phys., Vol.68, No.12, pp.6388-6391 (1990).
[120] Vurgaftman, I., J. R. Meyer, and L. R. Ram-Mohan, “Band Parameters for III–V Compound Semiconductors and Their Alloys”, J. Appl. Phys., Vol.89, No.11, pp.5815-5875 (2001).
[121] Arent, D. J., K. Deneffe, C. V. Hoof, J. De Boeck, and G. Borghs, “Strain Effects and Band Offsets in GaAs/InGaAs Strained Layered Quantum Structures”, J. Appl. Phys., Vol.66, No.4, pp.1739-1747 (1989).
[122] Galluppi, M., L. Geelhaar, and H. Riechert, “Bound-to-Bound and Bound-to-Free Transitions in Surface Photovoltage Spectra: Determination of the Band Offsets for InxGa1–xAs and InxGa1–xAs1–yNy Quantum Wells”, Phys. Rev. B, Vol.72, No.15, pp.155324-1~155324-12 (2005).
[123] Arias, J., I. Esquivias, S. Buerkner, P. Chazan, J. Ralston, E. C. Larkins, M. Mikulla, S. Weisser, and J. Rosenzweig, “Characterization and Modeling of InGaAs/GaAs Multi-Quantum Well Lasers by Capacitance-Voltage Measurements”, Proc. SPIE, Physics and Simulation of Optoelectronic Devices Vol.2994, pp.534-540 (1997).
[124] Sun, B. Q., D. S. Jiang, Z. Pan, L. H. Li, and R. H. Wu, “Influence of Dual Incorporation of In and N on the Luminescence of GaInNAs/GaAs Single Quantum Wells”, Appl. Phys. Lett., Vol.77, No.25, pp.4148-4150 (2000).
[125] Sitarek, P., K. Ryczko, G. Sęk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical Investigations of InGaAsN/GaAs Single Quantum Well Structures”, Solid-State Electron., Vol.47, No.3, pp.489-492 (2003).
[126] Hang, Z., D. Yan, F. H. Pollak, G. D. Pettit, and J. M. Woodall, “Temperature Dependence of the Direct Band Gap of InxGa1-xAs (x=0.06 and 0.15)”, Phys. Rev. B, Vol.44, No.19, pp.10546-10550 (1991).

QR CODE