簡易檢索 / 詳目顯示

研究生: 林育緯
Yu-Wei Lin
論文名稱: 以改良型螢火蟲演算法克服遮蔽問題之太陽能最大功率追蹤演算法
An Improved Firefly Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 楊宗銘
Chung-Ming Young
郭政謙
Cheng-Chien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 太陽能最大功率追蹤部份遮蔭螢火蟲演算法
外文關鍵詞: Partial Shading Conditions, Firefly Algorithm, MPPT
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能光電模組受限於部分遮蔭的情況下,其輸出功率會大幅的降低,然而,有不少演算法就是為了能夠減緩部分遮蔭所帶來的負面影響。而在其中,啟發式演算法(Meta-huristic Algorithm)最為能夠有效的運用本身特點還能夠不被區域最佳解所侷限,進而找到最大功率點的位置所在,儘管因部分遮蔭所造成 P-V 曲線形狀的變異,還是有能力進行搜尋。
  螢火蟲演算法(Firefly Algorithm)為近期才發展出來的一種啟發式演算法,在部分遮蔭的情況中,不僅追蹤的次數,效率也一樣優於常見的粒子群最佳化法,這是滿值得探討的議題之一。但是,螢火蟲演算法還是有一些影響到最大功率追蹤的隱憂潛藏在其中。不但每次的疊代運算都需要繁複的計算量,每隻螢火蟲也有可能因為受太多粒子的牽動,而作過多無謂的游移。因此,為了改善上述的兩個問題,本論文提出改良型的螢火蟲演算法(Improved Firefly Algorithm)就此衍生出來。新型的螢火蟲演算法為文章的主軸,主要是闡述利用此種演算法,既能減少原演算法的運算量,還能縮減收斂所需的時間。實驗結果顯示,此種新演算法在不同的遮蔭情形中,皆擁有更快的收斂速度,還能迅速的讓螢火蟲群聚於最大功率點附近進行追蹤的動作。


Photovoltaic (PV) modules subjected to partial shading conditions (PSC) can drastically decrease their power out. Hence, there have been various maximum power point tracking (MPPT) control algorithms developed to reduce or counteract the shading effects. Recently, a new meta-heuristic algorithm known as firefly algorithm (FA) was developed, which, under PSC, has been shown to successfully track the global maximum power point. Nevertheless, the FA still has some inherent problems, which may hinder the performance of the MPPT.
This paper improves the existing FA to counteract these problems. As will be demonstrated in the paper, the proposed improved FA (IFA) method can reduce the number of computation operations and the time for converging to the GMP that the existing FA requires. Experimental results show that the proposed method can track the global point under various PSCs with a faster convergence time, compared to some of the state-of-the-art, and can effectively suppress the power and voltage fluctuations.

目次

[1] K.L. Lian, J.H. Jhang, I.S. Tian, “A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined With Particle Swarm Optimization,” IEEE J. Photovolt., vol.4, no.2, pp.626-633, Mar. 2014.
[2] 吳財福、陳裕愷、張健軒,太陽能光電能供電與照明系統綜論,全華圖書股份有限公司,2007年11月。
[3] M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, “Maximum power point tracking of multiple photovoltaic arrays: A PSO approach,” IEEE Trans. Aerospace Electron. Syst., vol. 47, no. 1, pp. 367-380, Jan. 2011.
[4] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, “An improved particle swarm optimization (PSO)—based MPPT for PV with reduced steady-state oscillation,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
[5] B.K. Bose, “Global Energy Scenario and Impact of Power Electronics in 21st Century,” IEEE Trans. Ind. Electron., vol.60, no.7, pp.2638-2651, Jul. 2013.
[6] B.K. Bose, “Energy, environment, and advances in power electronics,” IEEE Trans. Power Electron., vol. 15, no. 4, pp.688-701, Jul. 2000.
[7] P. W. Lee,Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 787-795, Aug. 2000.
[8] D.J.S. Newlin, R. Ramalakshmi, and S. Rajasekaran, “A performance comparison of interleaved boost converter and conventional boost converter for renewable energy application,” IEEE Int. ICGHPC, vol., no., pp.1-6, 14-15 Mar. 2013.
[9] L. Piegari and R. Rizzo, “Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking,” IET Renew. Power Gener., vol. 4, no. 4, pp.317-328, Jul. 2010.
[10] W. Xiao and D. W.G., “A modified adaptive hill climbing MPPT method for photovoltaic power systems,” in Proc. 35th Annu. IEEE Power Electon. Spec. Conf., pp.1957-1963, Jun. 2004.
[11] T. Khatib and A. Mohamed, “A Reliable Maximum Power Point Tracker for Photovoltaic System,” Przeglad Elektrotechniczny, no. 2, pp.145-148, Feb. 2012.
[12] B. Alajmi and K. Ahmed, S. Finney, and B. W. Williams, “A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1596-1606, Apr. 2013.
[13] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
[14] T. L. Nguyen and K. S. Low, “A Global Maximum Power Point Tracking Scheme Employing DIRECT Search Algorithm for Photovoltaic Systems,” IEEE Trans. Ind. Electron., vol. 57, pp. 3456-3466, Oct. 2010.
[15] A. Bidram, A. Davoudi, and R. Balog, “Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays,” IEEE J. Photovolt., vol. 2, no. 4, pp. 532-546, Oct. 2012.
[16] A. Safari and S. Mekhilef, “Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1154-1161, Apr. 2011.
[17] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Netw., vol. 4, pp. 1942-1948, Nov./Dec. 1995.
[18] Abdalla, J. Corda, and L. Zhang, “Multilevel dc-link inverter and control algorithm to overcome the PV partial shading,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 14-18, Jan. 2013.
[19] Y.H. Ji, D.Y. Jung, J.G. Kim, J.H. Kim, T.W. Lee, and C.Y. Won, “A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV Array Under Partially Shaded Conditions,” IEEE Trans. Power Electron., vol.26, no.4, pp.1001-1009, Apr. 2011.
[20] W. Xiao, N. Ozog, and W. Dunford, “Topology study of photovoltaic interface for maximum power point tracking,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1696-1704, Jun. 2007.
[21] S. Kjaer, “Evaluation of the hill climbing and the incremental conductance maximum power point trackers for photovoltaic power systems,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 922-929, Dec. 2012.
[22] D. Nguyen and B. Lehman, “An adaptive solar photovoltaic array using model-based reconfiguration algorithm,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2644-2654, Jul. 2008.
[23] K. Kobayashi, I. Takano, and Y. Sawada, “A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions,” in Proc. IEEE Power Eng. Soc. General Meeting, vol. 4, pp. 2612-2617, Jul. 2003.
[24] Syafaruddin, E. Karatepe and T. Hiyama, “Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions,” IET Renew. Power Gener., vol. 3, no. 2, pp. 239-253, Jun. 2009.
[25] M.Z. Jacobson and M.A. Delunocchi, “A path to sustainable energy by 2030,” Sci. Amer., vol. 282, pp. 58-65, Nov. 2009.
[26] B. Subudhi and R. Pradhan, "A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems," IEEE Trans. Sustain. Energy,, vol.4, no.1, pp.89-98, Jan. 2013.
[27] B.A. Miwa, D.M. Otten, and M.F. Schlecht, “High efficiency power factor correction using interleaving techniques,” in Proc. IEEE Appl. Power Electron. Conf., pp.557-568, Feb 1992.
[28] 梁文誠,「適用於部分遮蔭狀況之太陽能系統最大功率追蹤法則之研究與實現」,碩士論文,國立台灣科技大學,民國101年。
[29] 田毅翔,「基於混合法之太陽能最大功率追蹤」,碩士論文,國立台灣科技大學,民國101年。
[30]張振皓,「因應部份遮蔭之改良型太陽能最大功率追蹤控制方法」,碩士論文,國立台灣科技大學,民國103年。

無法下載圖示 全文公開日期 2021/01/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE