簡易檢索 / 詳目顯示

研究生: 陳柏成
Po-Cheng Chen
論文名稱: 非對稱模糊邏輯控制之太陽能最大功率追蹤
Asymmetrical Fuzzy Logic Control for Photovoltaic Maximum Power Point Tracking
指導教授: 劉益華
Yi-Hua Liu
口試委員: 陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
楊宗銘
Chung-Ming Young
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 非對稱型模糊邏輯控制最大功率追蹤粒群演算法
外文關鍵詞: Asymmetrical fuzzy logic control, maximum power point tracking, particle swarm optimization
相關次數: 點閱:379下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中提出了應用於太陽能系統之非對稱型模糊控制最大功率追蹤法。本論文在輸入歸屬函數的設計上提出了二種設計方法,可以提升非對稱模糊控制最大功率追蹤法的性能。第一種設計方法是利用標準測試條件下之太陽能電池的功率-電壓曲線特性快速決定輸入歸屬函數設定值。第二種設計方法則是使用粒群演算法獲得最佳化輸入歸屬函數設定值。因為粒群演算法必須依據目標函數做最佳化,因此,本文以實際的太陽能發電系統為基準,提出設計目標函數的方法。本文使用低成本微處理器dsPIC33FJ16GS502實現非對稱型模糊控制最大功率追蹤法,並完成一個300 W原型電路進行實驗以與模擬相互驗證所提出的最大功率追蹤法是正確以及有效的。相較於對稱型模糊控制最大功率追蹤法,所提方法在標準測試條件下追蹤速度及追蹤精確度上分別提升了25.8%及0.93%。此外,對稱型模糊控制最大功率追蹤法在低照度時會存在無法追到最大功率點的問題,而本文提出之非對稱型模糊控制最大功率追蹤法可以有效的處理此一問題。第一種歸屬函數設計方法的優點為簡單而且容易應用。第二種歸屬函數設計方法使用粒群演算法獲得最佳化輸入歸屬函數設定值。相較於第一種設計方法,此設定值在標準測試條件下追蹤速度及追蹤精確度可以更進一步提升0.88%及0.98%。因此可以證明粒群演算法可以成功地應用於獲得最佳化的歸屬函數設定值。此外,粒群最佳化非對稱型模糊控制最大功率追蹤法相較於其他的最大功率追蹤法具有最高的適應值。


    In this dissertation, an asymmetrical fuzzy-logic-control (FLC) based maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems is presented. Two membership function (MF) design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V) curve of solar cells under standard test conditions (STC). The second method uses the particle swarm optimization (PSO) technique to optimize the input MF setting values. Because the PSO approach must target a cost function and optimization, a cost function design methodology that meets the performance requirements of practical photovoltaic generation systems (PGSs) is also proposed. The proposed asymmetrical FLC-based MPPT algorithm is implemented using a low cost digital signal controller dsPIC33FJ16GS502. To validate the correctness and the effectiveness of the proposed method, a 300 W prototyping circuit is built and simulations as well as experiments are carried out accordingly. Compared with the symmetrical FLC-based MPPT method, the transient time and the MPPT tracking accuracy are improved by 25.8% and 0.93% under STC, respectively. Moreover, since the symmetrical FLC-based MPPT method fails to track the real MPP when irradiance level is low, the proposed asymmetrical FLC-based MPPT method can successfully deal with this problem. The advantages of the first MF design method are that it is simple and easy to adopt. The second MF design method applies the PSO technique to obtain the optimized input MF setting values. Compared with the first design method, the transient time and the MPP tracking accuracy can further be improved by 0.88% and 0.98%, respectively. This proves that PSO can be successfully applied to obtain the optimized MF setting values. In addition, the PSO optimized asymmetrical FLC-based MPPT method has the highest fitness value compared with other implemented methods.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2 文獻回顧 1.3 研究目的 1.4 論文大綱 1.5 論文貢獻 第二章 太陽能電池介紹 2.1 太陽能電池原理 2.2 太陽能電池種類 2.3 太陽能電池電氣特性 2.4 固定步階式最大功率追蹤技術 2.4.1 擾動觀察法 2.4.2 增量電導法 2.5 變動步階式最大功率追縱技術 2.5.1 變動步階式擾動觀察法 2.5.2 變動步階式增量電導法 2.5.3 數位PI控制擾動觀察法 2.5.4 變動步階式最大功率追蹤法比較 第三章 太陽能最大功率追蹤系統之建模與分析 3.1 升壓式轉換器簡介 3.2 升壓式轉換器元件值設計 3.3 太陽能最大功率追蹤器之小信號模型分析 3.4 太陽能最大功率追蹤器之閉迴路控制器設計與分析 第四章 模糊控制最大功率追蹤法 4.1 dsPIC33FJ16GS502簡介 4.2 數位PI控制器 4.3 模糊控制器 4.4 對稱型模糊邏輯控制器之最大功率追蹤方法 4.5 非對稱型模糊邏輯控制器之最大功率追蹤 4.5.1 非對稱型模糊邏輯控制器之最大功率追蹤的觀念 4.5.2 系統化方法決定∆Ppv歸屬函數設定值 4.6 決定模糊邏輯控制器之輸入歸屬函數∆Ppv設定值 4.6.1 粒群演算法簡介 4.6.2 以粒群演算法決定輸入歸屬函數∆Ppv設定值 4.6.3 決定輸入歸屬函數∆Ppv設定值 4.7 模糊控制最大功率追蹤程式流程 第五章 太陽能最大功率追蹤之模擬與實驗結果 5.1 實驗設置系統 5.2 模擬與實驗結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] Renewable Energy Policy Network for the 21st Century, Available at: http://www.ren21.net/.
    [2] J. S. Lee and K. B. Lee, “Variable DC-Link Voltage Algorithm with a Wide Range of Maximum Power Point Tracking for a Two-String PV System,” Energies, vol. 6, pp. 58–78, Dec. 2013.
    [3] C. L. Shen and C. T. Tsai, “Double-Linear Approximation Algorithm to Achieve Maximum-Power-Point Tracking for Photovoltaic Arrays,” Energies, vol. 5, pp. 1982–1997, Jun. 2012.
    [4] D. Sera, T. Kerekes, R. Teodorescu and F. Blaabjerg, “Improved MPPT Algorithms for Rapidly Changing Environmental Conditions,” in Proceeding Power Electronics and Motion Control, 2006, pp.1614–1619.
    [5] Y. C. Kuo, T. J. Liang and J. F. Chen, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 594–601, Jun. 2001.
    [6] Y. T. Chen, Z. H. Lai and R. H. Liang, “A Novel Auto-Scaling Variable Step-Size MPPT Method for a PV System,” Solar Energy, vol. 102, pp. 247–256, Apr. 2014.
    [7] T. Radjaia, L. Rahmania, S. Mekhilefb and J. P. Gaubertc, “Implementation of a Modified Incremental Conductance MPPT Algorithm with Direct Control Based on a Fuzzy Duty Cycle Change Estimator using dSPACE,” Solar Energy, vol. 110, pp. 325–337, Dec. 2014.
    [8] A. K. Abdelsalam, A. M. Massoud, S. Ahmed and P. Enjeti, “High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1010–1021, Apr. 2011.
    [9] A. Pandey, N. Dasgupta and A. K. Mukerjee, “High-Performance Algorithms for Drift Avoidance and Fast Tracking in Solar MPPT System,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 681–689, Jun. 2008.
    [10] F. Liu, S. Duan, F. Liu, B. Liu and Y. Kang “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622–2628, Jul. 2008.
    [11] A. K. Abdelsalam, A. M. Massoud, S. Ahmed and P. Enjeti, “High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1010–1021, April 2011.
    [12] Q. Mei, M. W. Shan, L. Y. Liu and J. M. Guerrero, “A Novel Improved Variable Step-Size Incremental-Resistance MPPT Method for PV Systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2427–2434, Jun. 2011.
    [13] A. Messai, A. Mellit, A. Massi Pavan, A. Guessoum and H. Mekki, “FPGA-Based Implementation of a Fuzzy Controller (MPPT) for Photovoltaic Module,” Energy Conversion and Management, vol. 52, no. 7, pp. 2695–2704, Jul. 2011.
    [14] C. Larbes, S. M. Ait Cheikh, T. Obeidi and A. Zerguerras, “Genetic Algorithms Optimized Fuzzy Logic Control for the Maximum Power Point Tracking in Photovoltaic System,” Renewable Energy, vol. 34, no. 10, pp. 2093–2100, Oct. 2009.
    [15] A. Messai, A. Mellit, A. Guessoum and S. A. Kalogirou, “Maximum Power Point Tracking using a GA Optimized Fuzzy Logic Controller and its FPGA Implementation,” Solar Energy, vol. 85, no. 2, pp. 265–277, Feb. 2011.
    [16] L. K. Letting, J. L. Munda, Y. Hamama, “Optimization of a Fuzzy Logic Controller for PV Grid Inverter Control using S-Function Based PSO,” Solar Energy, vol. 86, no. 6, pp. 1689–1700, Jun. 2012.
    [17] T. L. Kottas, Y. S. Boutalis and A. D. Karlis, “New Maximum Power Point Tracker for PV Arrays using Fuzzy Controller in Close Cooperation with Fuzzy Cognitive Networks,” IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 793–803, Sep. 2006.
    [18] M. M. Algazar, H. AL-monier, H. A. EL-halim and M. E. E. K. Salem, “Maximum Power Point Tracking using Fuzzy Logic Control,” International Journal Electrical Power & Energy Systems, vol. 39, no.1, pp. 21–28, Jul. 2012.
    [19] J. K. Shiau, M. Y. Lee, Y. C. Wei and B. C. Chen, “Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies,” Energies, vol. 7, pp. 5027–5046, Aug. 2014.
    [20] O. Guenounou, B. Dahho and F. Chabour, “Adaptive Fuzzy Controller Based MPPT for Photovoltaic Systems,” Energy Conversion Management, vol. 78, pp. 843–850, Feb. 2014.
    [21] B. Bendiba, F. Krimb, H. Belmilia, M. F. Almia and S. Bouloumaa, “Advanced Fuzzy MPPT Controller for a Stand-Alone PV System,” Energy Procedia, vol. 50, pp. 383–392, Jul. 2014.
    [22] N. Altin and S. Ozdemir, “Three-Phase Three-Level Grid Interactive Inverter with Fuzzy Logic Based Maximum Power Point Tracking Controller,” Energy Conversion Management, vol. 69, pp. 17–26, May 2013.
    [23] M. A. A. Mohd Zainuri, M. A. Mohd Radzi, A. C. Soh and N. A. Rahim, “Development of Adaptive Perturb and Observe-Fuzzy Control Maximum Power Point Tracking for Photovoltaic Boost DC-DC Converter,” IET Renewable Power Generation, vol. 8, no. 2, pp. 183–194, Mar. 2014.
    [24] S. A. K. H. Mozaffari Niapour, S. Danyali, M. B. B. Sharifian and M. R. Feyzi, “Brushless DC Motor Drives Supplied by PV Power System Based on Z-source Inverter and FL-IC MPPT Controller,” Energy Conversion Management, vol. 52, no. 8–9, pp. 3043–3059, Aug. 2011.
    [25] A. Ravi, P. S. Manoharan and J. Vijay Anand, “Modeling and Simulation of Three Phase Multilevel Inverter for Grid Connected Photovoltaic Systems,” Solar Energy, vol. 85, no. 11, pp. 2811–2818, Nov. 2011.
    [26] S. Lalouni, D. Rekioua, T. Rekioua and E. Matagne, “Fuzzy Logic Control of Stand-Alone Photovoltaic System with Battery Storage,” Journal of Power Sources, vol. 193, no.5, pp. 899–907, Sep. 2009.
    [27] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1022–1030, Apr. 2011.
    [28] B. N. Alajmi, K. H. Ahmed, S. J. Finney and B. W. Williams, “A Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Systems in Microgrids,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 573–584, Apr. 2013.
    [29] B. N. Alajmi, K. H. Ahmed, G. P. Adam and B. W. Williams, “Single-Phase Single-Stage Transformer Less Grid-Connected PV System,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2664–2676, Jun. 2013.
    [30] S. Subiyanto, A. Mohamed and M. A. Hannan, “Intelligent Maximum Power Point Tracking for PV System using Hopfield Neural Network Optimized Fuzzy Logic Controller,” Energy Buildings, vol. 51, pp. 29–38, Aug. 2012.
    [31] C. L. Liu, J. H. Chen, Y. H. Liu and Z. Z. Yang, “An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems,” Energies, vol. 7, no. 4, pp. 2177–2193, Apr. 2014.
    [32] I. H. Altas and A. M. Sharaf, “A Novel Maximum Power Fuzzy Logic Controller for Photovoltaic Solar Energy Systems,” Renewable Energy, vol. 33, no. 3, pp. 388–399, Mar. 2008.
    [33] N. A. Gounden, S.A. Peter, H. Nallandula and S. Krithiga, “Fuzzy Logic Controller with MPPT using Line-Commutated Inverter for Three-Phase Grid-Connected Photovoltaic Systems,” Renewable Energy, vol. 34, no. 3, pp. 909–915, Mar. 2009.
    [34] Syafaruddin, E. Karatepe and T. Hiyama, “Artificial Neural Network-Polar Coordinated Fuzzy Controller Based Maximum Power Point Tracking Control under Partially Shaded Conditions,” IET Renewable Power Generation, vol. 3, no. 2, pp. 239–253, Jun. 2009.
    [35] Syafaruddin, E. Karatepe and T. Hiyama, “Polar Coordinated Fuzzy Controller Based Real-Time Maximum-Power Point Control of Photovoltaic System,” Renewable Energy, vol. 34, no. 12, pp. 2597–2606, Dec. 2009.
    [36] A. Chaouachi, R. M. Kamel and K. Nagasaka, “A Novel Multi-Model Neuro-Fuzzy-Based MPPT for Three-Phase Grid-Connected Photovoltaic System,” Solar Energy, vol. 84, no. 12, pp. 2219–2229, Dec. 2010.
    [37] C. B. Salah and M. Ouali, “Comparison of Fuzzy Logic and Neural Network in Maximum Power Point Tracker for PV Systems,” Electric Power Systems Research, vol. 81, no. 1, pp. 43–50, Jan. 2011.
    [38] H. Abu-Rub, A. Iqbal, S. M. Ahmed, F. Z. Peng, Y. Li and G. Baoming, “Quasi-Z-source Inverter-Based Photovoltaic Generation System with Maximum Power Tracking Control using ANFIS,” IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 11–20, Jan. 2013.
    [39] A. D. Karlis, T. L. Kottas and Y. S. Boutalis, “A Novel Maximum Power Point Tracking Method for PV Systems using Fuzzy Cognitive Networks (FCN),” Electric Power Systems Research, vol. 77, no. 3–4, pp. 315–327, Mar. 2007.
    [40] C. S. Chiu, “T-S Fuzzy Maximum Power Point Tracking Control of Solar Power Generation Systems,” IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1123–1132, Dec. 2010.
    [41] C. S. Chiu and Y. L. Ouyang, “Robust Maximum Power Tracking Control of Uncertain Photovoltaic Systems: A Unified T-S Fuzzy Model-Based Approach,” IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 1516–1526, Nov. 2011.
    [42] R. Arulmurugan and N. Suthanthiravanitha, “Model and Design of a Fuzzy-Based Hopfield NN Tracking Controller for Standalone PV Applications,” Electric Power Systems Research, vol. 120, pp. 184–193, Mar. 2015.
    [43] R. Rajesh and M. Carolin Mabel, “Efficiency Analysis of a Multi-Fuzzy Logic Controller for the Determination of Operating Points in a PV System,” Solar Energy, vol. 99, pp. 77–87, Jan. 2014.
    [44] A. A. Nabulsi and R. Dhaouadi, “Efficiency Optimization of a DSP-Based Standalone PV System Using Fuzzy Logic and Dual-MPPT Control,” IEEE Transactions on Industrial Informatics, vol. 8, no. 3, pp. 573–584, Aug. 2012.
    [45] 翁敏航、楊茹媛、管鴻、晁成虎,「太陽能電池:原理、元件、材料、製程與檢測技術」東華書局,民國99 年5 月。
    [46] N. Mohan, T. M. Undeland, and W. Robbins, “Power Electronics Converters Application and Design,” 3rd Edition, 2003.
    [47] A. Pressman, K. Billings, and T. Morey, “Switching Power Supply Design,” 3rd Edition, 2009.
    [48] M. H. Rashid “Power Electronics: Circuits, Devices and Applications,” 3rd Edition, 2004.
    [49] R. W. Erickson and D. Maksmovic, “Fundamentals of Power Electronics,” 2rd Edition, 2000.
    [50] W. D. Xiao, W. G. Dunford, P. R. Palmer and A. Capel, “Regulation of Photovoltaic Voltage,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1365–1374, Jun. 2007.
    [51] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4473–4482, Nov. 2009.
    [52] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963–973, Jul. 2005.
    [53] J. M. Enrique, E. Dura´n, M. Sidrach-de-Cardona and J. M. Andu´ jar, “Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies,” Solar Energy, vol. 81, no. 1, pp. 31–38, Jan. 2007.
    [54] K. E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimization and Intelligence: Advances and Applications,” 1st Edition, 2010.
    [55] Microchip Datasheet of dsPIC30F1010/2020, Microchip, Available at: http://www.microchip.com/.
    [56] 氣象資訊站, http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp

    無法下載圖示 全文公開日期 2020/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE