簡易檢索 / 詳目顯示

研究生: 鄭世欣
Zheng - shih shing
論文名稱: 燒結溫度及碳化物含量對Ni60-WC-Cr3C2之微結構與性能影響
Sintering temperature and carbide content on the sintered microstructures and properties of Ni60-WC-Cr3C2
指導教授: 林舜天
Shun-Tian Lin
口試委員: 胡泉凌
none
吳翼貽
Ye-Ee Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: Ni60碳化鎢碳化鉻
外文關鍵詞: Ni60, WC, Cr3C2
相關次數: 點閱:247下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,燒結後的Ni60-WC-Cr3C2 在不同的碳化物含量中用不同溫度製造。本論文分成三部分,第一部分由SEM測試對試片進行分析,以確認緻密化與否,以及運用XRD及EDXA證明相的組成及結構。第二部分將硬度測試之結果對應碳化物含量、燒結溫度做折線圖。第三部分是將第二部分較優越碳化物含量做腐蝕測試,在70wt% 硫酸中進行。
    經過上述測試發現最佳配比為30.0 vol% Carbide在1150°C下進行燒結,其微結構性能指標硬度為899.9 kgf/〖mm〗^2、腐蝕速率為7.0 mg/〖cm〗^2.hr、孔隙率為1.65%


    In this study, sintered Ni60-WC-Cr3C2 composites with different carbide concentrations were processed at different temperatures. There are three parts in this study. In the first part, the specimens were analyzed by scanning electron microscope (SEM) to examine the densification behavior, and XRD and EDXA to examine the constituting phases. In the second part, Optimization of the hardness was achieved by plotting the broken-line graph of carbide concentration, temperature and hardness. In the last part, the optimized composite in the second part were tested by corrosion test, wherein a 70% acid was used.
    It was found the optimized composition and temperature is 30.0 vol% carbide sintered at 1150°C. The microstructural ananlysis indicted hardness is 899.9 kgf/〖mm〗^2, corrosion rate is 7.0 mg/〖cm〗^2.hr, porosity is 1.65%.

    摘要I AbstractII 致謝III 目錄IV 圖目錄VII 表目錄X 第一章 緒論1 1.1前言1 1.2研究目的與動機1 第二章 理論基礎與文獻回顧2 2.1粉末性質探討2 2.1.1基本性質2 2.1.2粉末經真空燒結5 2.1.3化合物組成7 2.2參雜元素影響9 2.2.1參雜Cr3C2的影響9 2.2.2參雜Si及B的影響10 2.2.3參雜Fe的影響12 2.3液相燒結(Liquid Phase Sintering)12 第三章 實驗方法與步驟15 3.1 實驗設計15 3.2 胚體製備17 3.2.1 碳化物含量配比17 3.2.2 燒結製程18 3.2.3 燒結後處理19 3.3性能分析20 3.3.1 電子顯微鏡與元素能譜分析20 3.3.2 X光繞射儀 (X-ray Diffactometer)22 3.3.3 硬度23 3.3.4 視孔隙率25 3.3.5 相對密度26 3.3.6 耐腐蝕測試27 第四章 結果與討論28 4.1 燒結溫度及碳化物含量對性能的影響28 4.2 性能分析結果呈現30 4.2.1 視孔隙率及理論密度30 4.2.2 SEM結果33 4.2.3 硬度測試37 4.2.4 EDS結果39 4.2.5 X光繞射儀分析48 4.2.6 腐蝕測試52 4.3 性能結果統整54 4.3.1 燒結溫度及碳化物含量關係54 4.3.2 最佳配比之微結構深入探討56 4.3.3 化合物解析57 4.3.4 參雜鉻對性能之影響59 第五章 結論63 第六章 參考文獻65

    [1]Chou,S.F., et al. (1991). High temperture corrosion resistant bimetallic cylinder, Google Patents.

    [2]Smith, D. W., et al. (2005). High pressure cylinders including backing steel with tool steel lining, Google Patents.

    [3]Foster, G., et al.(1967). Hard, wear-resistant ferrous alloy, Google Patents.

    [4]Luo, F., et al. (2015). "Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition." Defence Technology 11(1): 35-47.

    [5]Wong, T. T., et al. (2000). "Wear resistance of laser-clad Ni–Cr–B–Si alloy on aluminium alloy." Journal of Materials Processing Technology 100(1–3): 142-146.

    [6]Hemmati, I., et al. (2013). "Phase formation and properties of vanadium-modified Ni–Cr–B-Si–C laser-deposited coatings." Journal of Materials Science 48(8): 3315-3326.

    [7]Chen, C.-h., et al. (2014). "Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings." International Journal of Minerals, Metallurgy, and Materials 21(12): 1254-1262.

    [8]Liu, S. L. , et al. (2009). "Microstructure and properties of AC-HVAF sprayed Ni60/WC composite coating." Journal of Alloys and Compounds 480(2): 254-258.

    [9]Zhang, D.-W., et al. (2001). "Laser cladding of stainless steel with Ni–Cr3C2 for improved wear performance." Wear 251(1–12): 1372-1376.

    [10]Pogrebnyak,A.D.,et al.(2011). "Tribological and physical-mechanical properties of protective coatings from Ni-Cr-B-Si-Fe/WC-Co-Cr before and after fission with a plasma jet." Journal of Friction and Wear 32(2): 84-90.

    [11]Jiang,G.,et al. (2003). "Parameters investigation during simultaneous synthesis and densification WC–Ni composites by field-activated combustion." Materials Science and Engineering: A 360(1–2): 377-384.

    [12]Xuan, H.-F., et al. (2014). "A study on microstructure and flame erosion mechanism of a graded Ni–Cr–B–Si coating prepared by laser cladding." Surface and Coatings Technology 244: 203-209.

    [13]Obadele, B. A., et al. (2013). "Effects of TiC addition on properties of laser particle deposited WC–Co–Cr and WC–Ni coatings." Transactions of Nonferrous Metals Society of China 23(12): 3634-3642.

    [14]Berger, L.-M., et al. (2010). "Influence of feedstock powder characteristics and spray processes on microstructure and properties of WC–(W,Cr)2C–Ni hardmetal coatings." Surface and Coatings Technology 205(4): 1080-1087.

    [15]Li,Q.,et al.(1999)."Microstructural characterization of WCp reinforced Ni–Cr–B–Si–C composite coatings." Surface and Coatings Technology 114(2–3): 285-291.

    [16]Xuan, H.-F., et al. (2014). "A study on microstructure and flame erosion mechanism of a graded Ni–Cr–B–Si coating prepared by laser cladding." Surface and Coatings Technology 244: 203-209.

    [17]Bolelli, G., et al. (2014). "Tribological behavior of HVOF- and HVAF-sprayed composite coatings based on Fe-Alloy + WC–12% Co." Surface and Coatings Technology 248: 104-112.

    [18]St-Georges, L. (2007). "Development and characterization of composite Ni–Cr + WC laser cladding." Wear 263(1–6): 562-566.

    [19]Bhagavathi, L. R., et al. (2011). "Mechanical and corrosion behavior of plain low carbon dual-phase steels." Materials & Design 32(1): 433-440.

    [20]Zhang, D. , et al. (2005). "Laser cladding of stainless steel with Ni–Cr3C2 and Ni–WC for improving erosive–corrosive wear performance." Surface and Coatings Technology 190(2–3): 212-217.

    [21]Joo, H. G. , et al. (2014). "Effect of boron on wear and erosion of WC – Ni vacuum brazed coating." International Journal of Materials Research 105(8): 802-809.

    [22]Lu, S.-P. ,et al. (2002). "Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composite coating." Surface and Coatings Technology 153(1): 40-48.

    [23]Eremenko,V.N(1970).NaidichandI.Aienko,“LiquidSintering, ”Consolation New York,

    [24]Hwang ,K. S., PhD Thesis(1984),“Rensselaer Polytechnic,” Troy

    [25]Cahn, J. W., et al.(1970). “Analuysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles,” J. Am. Ceram. p. 406

    [26]Huppmann , W. J. , et al. (1980),“Sintering Process,” G.C. Kuczynski Plenum Press, New York,p.189

    [27]Huppmann, W. J., et al. (1978),“Rearrangement During Liquid-Phase Sintering of Ceramics,”

    [28]German ,R. M.(1985), “Liquid Phase Sintering,” Plenum Press, New York

    [29]Jean , J. H. , et al.(1989),“Journal of Material Science,” 24, p. 500

    [30]Yang, G.-r., et al.(2016). "Microstructure characteristics of Ni/WC composite cladding coatings." International Journal of Minerals, Metallurgy, and Materials 23(2): 184-192.
    [31]Bansal, A., et al. (2015). "Microstructure and Abrasive Wear Performance of Ni-WC Composite Microwave Clad." Journal of Materials Engineering and Performance 24(10): 3708-3716.

    [32]Smith, D. W., et al. (2005). High pressure cylinders including backing steel with tool steel lining, Google Patents.

    [33]Grigorescu, I. C., et al. (1995). "Phase characterization in Ni alloy-hard carbide composites for fused coatings." Surface and Coatings Technology 76–77, Part 2: 494-498.

    [34]Zhang, X., et al. (2016). "Effects of Ni addition and cyclic sintering on microstructure and mechanical properties of coarse grained WC–10Co cemented carbides." International Journal of Refractory Metals and Hard Materials 57: 64-69.

    [35]Aristizabal, M., et al. (2010). "Liquid phase sintering and oxidation resistance of WC–Ni–Co–Cr cemented carbides." International Journal of Refractory Metals and Hard Materials 28(4): 516-522.

    [36]Kumar, D., et al. (2016). "High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature." Materials Science and Engineering: A 663: 21-28.

    [37]Cox, W. G., et al. (1996). Injection molding and extrusion barrels and alloy compositions thereof, Google Patents.

    [38]Gao, L. X., et al. (2013). "Preparation of Ni-Cr-B-Si‐WC brazed coating and its microstructure characteristics." Surface and Interface Analysis 45(3): 767-772.

    [39]Liu, Y., et al. (2014). "Corrosion behavior of thermal-sprayed WC cermet coatings in SO4 2− environment." Rare Metals 33(3): 318-323.

    [40]細田, 幸., et al. (2008). "WC-Cr3C2-Co系超硬合金腐食特性及Co含有量影響." 粉体粉末冶金 55(12)
    [41]陳,2016,“真空燒結對Ni60-WC 性質與顯微結構之研究“

    QR CODE