簡易檢索 / 詳目顯示

研究生: 孫秀菁
Siou-Jing Sun
論文名稱: 合金組成對鑽石與鎳基合金界面相的影響
Effects of Brazing Alloy Composition on the Phase Evolution near the interface between Diamond and Nickel alloys
指導教授: 林舜天
Shun-Tian Lin
口試委員: 宋健民
James C. Sung
謝育展
Yu-Chan Hsieh
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 鑽石工具硬銲合金界面結構碳化鉻
外文關鍵詞: Diamond, Brazing, Nickel alloy, Carbides
相關次數: 點閱:337下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   以B、P、Si元素為低溫助劑的低融點鎳基合金是常應用於鑽石工具的硬銲填料,尤其是鑽石與添加活性元素Cr的鎳基合金硬銲後,附著穩固,展現出良好的性能。因此本研究主要比較三種不同鎳基硬銲合金,分別為Ni-7Cr-3Fe-3B-4.5Si、Ni-11P及Ni-14Cr-10P合金,探討不同成分的鎳基合金對硬銲鑽石顆粒表面微結構之影響及差異。實驗結果顯示,以SEM觀察合金微結構變化,發現含有活性元素Cr的鎳基合金會在鑽石表面產生相變化,形成一碳化鉻層,保護鑽石阻止Ni元素的入侵,避免鑽石顆粒劣化;而未含活性元素Cr的鎳基合金,則是造成鑽石顆粒完全的劣化。Ni-Cr二元合金的熔點高於1400℃,若在此溫度下進行硬銲的操作,鑽石會快速劣化,讓鑽石強度嚴重降低,故添加功能有如助銲劑的B、P、Si元素來降低合金熔點,不僅增加合金融化的流動能力,更可避免鑽石的劣化。以XRD分析鑽石顆粒表面碳化物析出型態與其成分,證實與Ni-7Cr-3Fe-3B-4.5Si及Ni-14Cr-10P合金燒結過後的鑽石顆粒表面皆產生碳化鉻相,此碳化鉻相可有效增進銲料對鑽石的界面結合強度,大幅提升銲料抓持鑽石的效果。


      Brazing diamond using nickel-based alloys are widely practiced, and it is well known that the bond strength between the diamond grits and the brazing matrix can vary significantly. The addition of an active element, such as Cr, to the Ni-based brazing alloy , causes the Cr segregation of the brazing interface and the formation of carbide phases. Chromium carbide layer avoids the transformation of diamond into graphite and possibly increased the bonding strength between the matrix and diamond grits. However, the eutectic temperature of Ni-Cr is higher than 1400℃, which can easily transform diamond into graphite. Melting point reducing elements, such as B, Si, and P are widely used to reduce the melting points of the Ni-Cr alloys. In this study, three different nickel-based alloys are used to braze diamond grits, including Ni-11P, Ni-14Cr-10P, and Ni-7Cr-3Fe-3B-4.5Si (wt.%). The effects of carbide former (Cr), and melting temperature reducer (B, Si, and P) on the integrity of diamond grits were investigated. The experimental results show that two different chromium carbide phases, including Cr7C3 and Cr3C2, were found near the interface between Ni-14Cr-10P , Ni-7Cr-3Fe-3B-4.5Si (wt%) brazing alloy and diamond grits, and the Ni-11P alloy transformed diamond into graphite, when the brazing practice was carried out at 980℃. The brazing temperature was obviously reduce, when the addition of B, Si, and P
    elements to the Ni-based brazing alloy.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 前言 1 第二章 基礎理論與文獻回顧 5 2.1 鑽石性質 5 2.2 金屬基鑽石工具 9 2.3 金屬基材與鑽石的界面反應 12 2.4 活性硬銲合金種類對鑽石表面碳化物生成的影響 15 2.5 鎳基合金種類 18 第三章 實驗流程 22 3.1 實驗流程 22 3.2 實驗材料 24 3.3 真空硬銲製程 28 3.4 分析方法 30 3.4.1 熱差分析 30 3.4.2 鑽石微結構及表面型態分析 30 3.4.3 鑽石結構分析 30 3.4.4 X-ray繞射分析 31 第四章 結果與討論 32 4.1 鎳基合金熱分析 32 4.2 硬銲合金與鑽石接合特性 35 4.3 表面微結構及鑽石性質變化 38 4.3.1 鑽石表面微結構 39 4.3.2 鑽石斷面微結構 44 4.3.3 X-Ray結構分析 47 4.3.4 鑽石性質變化 49 第五章 結論 53 第六章 參考文獻 55

    [1] 汪建民,”陶瓷技術手冊”,中華民國粉末冶金協會再版,新竹
    縣,August (1999) 876~908, 1171~1179.

    [2] J. Konstanty, “The Materials Science of Stone Sawing”, Industrial Diamond Review, 51 (1991) 27~31.

    [3] T. Fujimori, Y. Yamamoto, A. Okada, “Improvement of Strength and Cutting Performance of Industrial Diamond”, Journal of the Materials Science Society of Japan, 32(1) (1995) 39~49.

    [4] M. Igharo, J. Russell, “Development of Diamond Impregnated Cutting Tools”, Surface Engineering, 10(1) (1994) 52~55.

    [5] E. D. Kizikov, “Vacuum Technology for Diamond Tool making”, Industrial Diamond Review, 51 (1991) 20~23.

    [6] 宋健民,精密製造與新興能源機械技術專輯,278期,P122-130.

    [7] Guan Yancong, Chen Yuquan, Yao Deming, “Development of solder”, Harbin University of Science and Technology, 36(7), (2005) 140~143.

    [8] H. K. Tonshoff, C. Marzenell, “The Wear of Electroplated Diamond Tools in Gear honing”, Industrial Diamond Review 59 (1999) 309~315.

    [9] P. S. Pan, C. R. Yang, K. H. Yang, “Study on new of Matrix Material of Electroplating Diamond Tool”, Key Engineering Materials, (202,203) (2001) 245~248.

    [10] D. Evens, M. Nicholas, P. M. Scott, “The Wetting and Bonding of Diamonds by Copper-tin-titanium Alloys”, Industrial Diamond Review, 37 (1977) 306~309.
    [11] Y. Z. Hsieh, J. F. Chen, S. T. Lin, “Pressureless Sintering of Metal-bonded Diamond Particle Composition Blocks”, Journal of Materials Science, 35 (2000) 5383~5387.

    [12] Z. Lin, R. A. Queeney, “Interface Bonding in a Diamond/Metal Matrix Composite”, Modern Developments in Powder Metallurgy, 20 (1988) 443~450.

    [13] S. M. Chen, S. T. Lin, “Brazing Diamond Grits onto a Steel Substrate Using Copper Alloys as the Filler Metals”, Journal of Materials Engineering and Performance, 5(6) (1996) 761~766.

    [14] Z. B. Wu, H. J. Xu, B. Xiao, “Microanalysis of Interface between Ni-Cr Alloy and Diamond (or Steel)”, Key Engineering Materials, (202,203) (2001) 143~146.

    [15] V. P. Chepeleva, “Compaction of Metallic and Diamond-Metal Composites during Sintering”, Journal of Superhard Materials, 6(2) (1984) 65~69.

    [16] S. F. Huang, H. L. Tsai, S. T. Lin, “Effects of Brazing Route and Brazing Alloy on the Interfacial Structure between Diamond and Bonding Matrix”, Materials Chemistry and Physics, 84 (2004) 251~258.

    [17] Y. Z. Hsieh, S. T. Lin, “Diamond Tool Bits with Iron Alloys as the Binding Matrices”, Materials Chemistry and Physics, 72 (2001) 121~125.

    [18] P. K. Jun and H. B. Lim, “Study on the determination of contamination by Cu particles on silicon wafer surfaces”, The Royal Society of Chemistry 2003, 18, (2003) 111~114.

    [19] T. Kobayashi!, I. Uchiyama, A. Kimura, S. Oka, Y. Kitagawara, “Direct observation of electrically harmful surface defects of Si wafer immersed in slightly Cu-contaminated water”, Journal of Crystal Growth 210 (2000) 112~115.

    [20] Z.J. Yao, H.H. Su, Y.C. Fu, H.J. Xu,” High temperature brazing of diamond tools”, Transcation Nonferrous Metallurgy Society of Chian, vol.15, No. 6, (2005) 1227~1302.

    [21] P.M. Scott, M. Nicholas, B. Dewar,” The wetting and bonding of diamonds by copper-base binary alloys”, Journal of Materials Science, 10 (1975) 1833~1840.

    [22] A. K. Chattopadhyay, H. E. Hintermann, “On Brazing of Cubic Boron Nitride Abrasive Crystals to Steel Substrate with Alloys Containing Cr or Ti”, Journal of Materials Science, Vol. 28, (1993) 5887~5893.

    [23] B.J. Ma, Y.C. Fu, W.F. Ding, W. G, and H.J. Xu,” Research on interfacial microstructure of Ti-coated diamond brazed and uncoated diamond brazed by high-frequency induction”, Key Engineering Materials, vol. 359-360, (2008) 53~57.

    [24] A. K. Chattopadhyay, L. Chollet and H. E. Hintermann, “ Experiment investigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere”, Journal of Materials Science Vol. 26, (1991) 5093~5100.

    [25] P. Xiao, B. Derby, “Wetting of silicon carbide by chromium containing alloys”, Acta Materials, Vol. 46, No. 10, (1998) 3491~3499.

    [26] C. Wan, P. Kritsalis, B. Drevet, N. Eustathopoulos, “Optimization of wettability and adhesion in reactive nickel-based alloys/alumina systems by a thermodynamic approach”, Materials Science & Engineering, A207, (1996) 181~187.

    [27] J. Esteve, J. Romero, M. Gomez, A. Lousa,” Cathodic chromium carbide coatings for molding die application”, Surface & Coatings Technology, 188-189, (2004) 506~510.

    [28] O. Glozman, A. Hoffman,” A study of the initial stages of diamond deposition of ferrous substrates coated by a nitrided chromium interlayer and on nitrided polycrystalline chromium substrates”, Diamond and Related Materials, 6, (1997) 1847~1856.

    [29] T.M. Maciel, I.T. Chang, M. Strangwood, W.B. Castro,” Brazing of Al2O3 with rapidly solidified melt spun Ni-Cr-P alloy ribbons”, Materials Science Forum, vol. 530-531, (2006) 473~477.

    [30] Q. Zhang, S. Li, Z. Chen, H. Tang, ”Wettability of SiC/liquid Co with Cr additive system”, Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, v 23, n 4, (2006) 60~64.

    [31] J.T. Loefrt, E.M. Tausch,” Method of manufacturing diamond abrasive tools”, US Patent, No. 3,894, (1975) 673.

    [32] A.H. Tan, and Y.C. Cheng,” Wear-corrosion properties of diamond conditioners in CMP slurry”, Wear, 262, (2007) 693~698.

    [33] D. Huadong, L. Yawen, H. Hongqi, and J. Zhihao,” Decreasing the sintering temperature of diamond-bit matrix material by the addition of the element P”, Journal of Materilas Processing Technology, 74, (1998) 52~55.

    [34] X. Wu, H. Li, R.S. Chandel, F. Lan, and H.P. Seow,” Effect of mechanical vibration on TLP brazing with BNI-2 nickel-based metal”, Journal of Materials Science Letters, 19, (2000) 319~321.

    [35] K. E. Spear, J. P. Dismukes, “Synthetic Diamond - Emerging CVD Science and Technology”, Wiley, New York (1994).

    [36] http://www.factdiamond.com

    [37] M. J. Jackson, N. Barlow, B. Mills, “The Effect of Bonn Composition on the Strength of Partially Bonded Vitrified Ceramic Abrasives”, Journal of Materials Science Letter, 13 (1994) 1287~1289.

    [38] T. Kane, “Superabrasive Tools & Materials for Aerospace”, Intertech Conference, Vancouver BC, Canada, July (2000) 17~21.

    [39] M. Jeenings, D. Wright, “Guidelines for Sawing Stone”, Industrial Diamond Review, 45(2) (1989) 70~75.

    [40] M. Meszaros, K. Vadasdi, “Process and Equipment for Electrochemical Etching of Diamond-Containing Co-WC Tools and Recovery of Diamond from Used Steel Tools”, International Journal of Refractory Metals and Hard Materials, 14 (1996) 229~234.

    [41] F. Frehn, A. T. Notter, “Grinding Hardenable Steel Bonded Carbide Alloys with Diamond Wheels”, Industrial Diamond Review, 6 (1979) 195~202.

    [42] R. G. Ojeda, M. D. Villar, P. Muro, I. Iturriza, F. Castro, “Densification of Diamond Tools with Co, Ni and Fe Based Metallic Binders”, Powder Metallurgy World Congress, Superhard/Refractory Metals, (1998) 481~486.

    [43] J. M. Borel, B. Gartner, “Effects of Varied CuSn-Alloying Systems as Selected Bonding Material in Hot Pressing Processing Diamond Tools”, Powder Metallurgy World Congress, Hard Materials, (1998) 213~216.

    [44] W. C. Li, C. Liang, S. T. Lin, “Interfacial Segregation of Ti in the Brazing of Diamond Grits onto a Steel Substrate Using a Cu-Sn-Ti Brazing Alloy”, Metallurgical and Materials Transactions A, 33(A) (2002) 2163~2172.

    [45] W. C. Li, C. Liang, S. T. Lin, “Epitaxial Interface of Nanocrystalline TiC Formed between Cu-10Sn-15Ti Alloy and Diamond”, Diamond and Related Materials, 11 (2002) 1366~1373.

    [46] S. F. Huang, H. L. Tsai, S. T. Lin, “Laser Brazing of Diamond Grits Using a Cu-15Ti-10Sn Alloy”, Materials Transactions, 43 (2002) 2604~2608.

    [47] Z. Lin, R. A. Queeney, “Fracture Resistance of Diamond-reinforced Hot Pressed Cu/Ni Powders”, Powder Metallurgy International 18, (1986) 76~78.

    [48] Y. V. Naidish, V. P. Umanskii, I. A. Lavrinenko, “Industrial Diamond Review”, 44 (1984) 327.

    [49] S. Y. Luo,”Investigation of the Worn Surfaces of Diamond Sawblades in Sawing Granite”, Journal of Materials Processing Technology, Vol. 70, (1995) 1~8.

    [50] H. K. Tonshoff, and J. Asche, “ Wear of Metal-bond Diamond Tools in the Machining of Stone”, Industrial Diamond Review, #1, (1997) 7~13.

    [51] W.C. Li, C. Liang, S.T. Lin, “Interfacial Segregation of Ti in the Brazing of Diamond Grits onto a Steel Substrate Using a Cu-Sn-Ti Brazing Alloy”, Metallurgical and Materials Transactions A, 33(A) (2002) 2163~2172.

    [52] M. G. Nicholas,“ Joining of Ceramics”, London, New York, Chapman and Hall, ch.5, (1990) 73~93.

    [53] M. M. Schwartz, “Ceramic Joining”, Materials Park, Ohio:ASM International, ch.2 , (1989) 17~40.

    [54] 謝育展, “銅錫鈦合金硬銲鑽石之組成相與性能硏究”, 博士學位論文, 國立台灣科技大學機械系 (2008).
    [55] Hand book

    [56] E. Benz, "Vacuum Brazing as a Production Method", Industrial Diamond Review, #5, (1991) 249~250.

    [57] A. Davies, “Induction brazing for diamond toolmarkers”, Industrial Diamond Review, #6, (1992) 325~327.

    [58] A.K. Chattopadhyay, L. Chollet, and H.E. Hintermann,” Induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere”, Surface and Coating Technology, 45, (1991) 293~298.

    [59] R.G.. Coltters, G..R. Belton, ”High temperature thermodynamic properties of the chromium carbides Cr7C3 and Cr3C2 determined using a galvanic cell technique ”, Metallurgical Transactions B (Process Metallurgy), v 15B, n 3, (1984) 517~521.

    [60] JCPDS-ICDD FILES,#36-1482, #71-2287, #79-1467, V.2.3, (2002)

    QR CODE