簡易檢索 / 詳目顯示

研究生: 葉祐榮
You-Rong Yeh
論文名稱: 立式六軸傘齒輪切齒機之面滾式戟齒輪刀傾全展成切製法數學模式
Mathematical Model of Face-Hobbing Bevel Gears Produced by the Spiroflex Method on a Vertical Six-Axis CNC Machine
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 徐瑞宏
Ruei-Hung Hsu
郭俊良
Chun-Liang Kuo
石伊蓓
Yi-Pei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 面滾式切製法全展成法戟齒輪六軸CNC傘齒輪切齒機VERICUT切削模擬
外文關鍵詞: Face-hobbing method, Spiroflex method, hypoid gear, vertical six-axis CNC machine, VERICUT CNC machine simulation
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螺旋傘齒輪和戟齒輪的製造方法主要可分為兩種,分別為面滾式切製法以及面銑式切製法,不同於面銑式切製法的非連續加工,面滾式切製法乃連續切削,因此擁有加工速度較快之優點。面滾式切製法又分為刀傾全展成法(Sproflex)和半展成法(Spirac),分別應用於,大、小齒輪齒數比小於和大於2.5的場合。面滾式切製法為連續滾切加工,其加工速度快,故廣為汽車傳動齒輪製造所採用,然而市面上傘齒輪的設計和製造必須依賴設計軟體,如Gleason的CAGE和Klingelnberg的KIMoS,每套軟體價格皆動輒百萬,本論文希望建立面滾式全展成法戟齒輪齒面數學模式,並進而推導六軸傘齒輪切齒機機械設定,應用於實際加工。
    本論文首先計算面滾式刀傾全展成法戟齒輪之齒胚參數、刀具參數和奧利康S17傘齒輪切齒機的機械設定,進行轉換使其適用於泛用虛擬搖台傘齒輪切齒機,便能在泛用切齒機之座標系統上推導齒面數學模式。在推導出齒面數學模式後,對該數學模式所設計之齒輪對進行齒面接觸性能分析,檢視該齒輪對齒面接觸性能是否符合使用需求,藉此檢驗齒面數學模式的正確性。立式六軸CNC傘齒輪切齒機為最新的設計,必須求得切齒座標位置來規劃加工NC碼,以進行加工。根據六軸CNC數控型切齒機之座標系統,推導刀具到工件座標轉換矩陣,再利用泛用機和六軸機之座標轉換矩陣相同,可切出相同齒輪的條件,推導六軸切齒的座標值,藉此進行加工路徑及NC規劃,並以VERICUT模擬面滾式傘齒輪加工,計算模擬切削齒輪與理論齒輪間的齒面誤差,驗證本論文數學模式的正確性。


    Face-hobbing and face-milling are two main manufacturing methods for spiral bevel gears and hypoid gears. Face-hobbing and face-milling are continuous indexing and single indexing methods, respectively. The former has faster producing rate and is further divided into Spriroflex and Spirac methods, which are respectively applied to cases where the gear ratio is less or greater than 2.5. Due to its high productivity, face-hobbing is widely used in the manufacture of automotive transmission gears. However, the design and manufacture of bevel gears must be highly dependent on design software, such as Gleason’s CAGE and Klingelnberg’s KIMoS. The prices of the commercial software are quite expensive. This paper aims to establish a mathematical model of the Spiroflex hypoid gear, and to derive machine settings of the modern six-axis CNC bevel gear cutting machine. Therefore, face-hobbing can be applied to CNC machines.
    First of all, this paper calculates the gear blank parameters, tool parameters and machine settings of the Oerlikon S17 bevel gear hobbing machine using the Spiroflex method. Machine settings are then converted to those of a virtual cradle-type bevel gear generator which is a universal machine. Based on the coordinate systems of universal machine, the mathematical model of the tooth surface can be derived. Moreover, two contact performance analyses (ease off and tooth contact analysis) are applied to verify the correctness of the proposed mathematical models. The newest machine for bevel gear cutting is the vertical six-axis CNC machine. One of the key technologies of the modern machine is to determine the six-axis cutting positions, therefore, NC codes can be programed. According to the condition that coordinate transformation matrices from the tool to the workpiece must be identical for the universal machine and the six-axis CNC machine, the six-axis cutting positions can be derived. As a result, programming the NC codes for the face-hobbing process can be carried out. Finally, a commercial software VERICUT is applied to simulate the NC codes of Spiroflex face-hobbing method. The flank deviations between simulated and theoretical tooth surfaces are calculated to verify the correctness of the mathematical model.

    指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 V 目 錄 VI 符號索引 VIII 圖索引 XIII 表索引 XV 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻回顧 3 1.4 論文架構 4 第 2 章 面滾式刀傾全展成法之戟齒輪製造參數計算 5 2.1 前言 5 2.2 齒面壓力角計算 5 2.3 面滾式全展成法戟齒輪齒胚參數計算 6 2.4 面滾式刀傾全展成法刀具參數計算 13 2.5 面滾式刀傾全展成法機械設定計算 20 2.6 數值範例 27 2.7 小結 29 第 3 章 面滾式刀傾全展成法之戟齒輪齒面數學模式及其接觸性能分析 30 3.1 前言 30 3.2 面滾式刀具數學模式 30 3.3 泛用虛擬搖台式切齒機之機械設定轉換 32 3.4 泛用面滾式戟齒輪齒面數學模式推導 34 3.5 齒面相對修形 38 3.6 齒面接觸分析 40 3.7 搖台角範圍計算 40 3.8 數值範例 41 3.9 小結 47 第 4 章 六軸CNC傘齒輪切齒機之數學模式 49 4.1 前言 49 4.2 六軸機座標系統 49 4.3 六軸機械設定推導 51 4.4 G54切齒程式原點 53 4.5 加工工序規劃 54 4.6 加工條件計算 55 4.7 數值範例 56 4.8 小結 58 第 5 章 以VERICUT模擬面滾式加工 59 5.1 前言 59 5.2 VERICUT面滾式傘齒輪加工模擬 59 5.3 齒面誤差分析 61 5.4 數值範例 62 5.5 小結 64 第 6 章 結論與建議 65 6.1結果與討論 65 6.2未來展望 66 參考文獻 67

    [1] ANSI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, Alexandria, VA, 2008.
    [2] Stadtfeld, H. J, Gleason Bevel Gear Technology, The Gleason Works, Rochester, NY, 2014.
    [3] 董學朱,擺線齒錐齒輪及準雙曲面齒輪設計和製造,機械工業出版社,北京,2002。
    [4] Shih, Y. P., Fong, Z. H., and Lin, C. Y., “Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator,” ASME J. Mech. Des., 129(1), pp. 38-47, 2007.
    [5] Litvin, F. L., Zhang, Y., Lundy, M., and Heine, C., “Determination of Settings of a Tilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears,” J. Mech. Transm. Autom. Des., 110(4), pp. 495–500, 1988.
    [6] Litvin, F. L., Chaing, W. S., Kuan, C., Lundy, M., and Tsung, W. J., “Generation and Geometry of Hypoid Gear-Member with Face-Hobbed Teeth of Uniform Depth,” Int. J. of Mach. Tools Manufact., 31(2), pp. 167–181, 1991.
    [7] 石伊蓓,「蝸線傘齒輪及戟齒輪之面滾式切製法介紹」,機械月刊,第三十卷,第十期,第18-26頁,2004。
    [8] 石伊蓓,「蝸線傘齒輪及戟齒輪切削刀具」,機械月刊,第三十一卷,第八期,第72-87頁,2005。
    [9] Maiuri, T. J., “Spiral Bevel and Hypoid Gear Cutting Technology Update ,” Gear Technology Magazine, pp.30-39, 2007
    [10] Lee, Y. H., Fong, Z. H., “A Mathematical Model for Grinding a Stick Blade Profile to Cut Hypoid Gears”, ASME J. Mech. Des., 142, 2020.
    [11] Krenzer, T. J., “Cutter and Method for Gear Manufacture,” U.S Patent No.4,525,108, 1985.
    [12] Shtipelaman, B. A., Design and Manufacture of Hypoid Gears, John Wiley and Sons, Chichester, NY, 1978.
    [13] Litvin, F. L., and Fuentes, A., Gear Geometry and Applied Theory, 2nd Edition, Cambridge University Press, Cambridge, UK, 2004.
    [14] Fuentes, A., Litvin, F. L., Mullins, B. R., Woods, R., and Handschuh, R. F., “Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears,” ASME J. Mech. Des., 124(3), pp. 524–532, 2002.
    [15] Vogel, O., Griewank, A., and Bär, G., “Direct Gear Tooth Contact Analysis for Hypoid Bevel Gears,” Comput. Methods Appl. Mech. Engrg. 191(36), pp. 3965-3982, 2002.
    [16] Fan, Q., and Wilcox, L., New developments in tooth contact analysis (TCA) and loaded TCA for spiral bevel and hypoid gear drives, AGMA, Technical Paper, No. 05FTM08, 2005.
    [17] Achtmann, J., and Bär, G., “Optimized Bearing Ellipses of Hypoid Gears,” AS-ME J. Mech. Des.1050-0472, 125, pp. 739–745, 2003.
    [18] Litvin, F. L., Zhang, Y., Kieffer, J., and Handschuh, R. F., “Identification and Minimization of Deviations of Real Gear Tooth Surfaces,” ASME J. Mech. Des., 113(3), pp.55-62, 1991.
    [19] Litvin, F. L., Kuan, C., Wang, J. C., Handschuh, R. F., Masseth, J., and Maruyama, N., “Minimization of Deviations of Gear Real Tooth Surfaces Determined by Coordinate Measurements,” ASME J. Mech. Des., 115(4), pp. 995-1001, 1993.
    [20] ISO 10300-2, Calculation of load capacity of bevel gears, 2013.
    [21] Shih, Y. P., and Fong, Z. H., “Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography,” ASME J. Mech. Des., 129(12), pp. 1294-1302, 2007.
    [22] Wang, P. Y, and Fong, Z. H., “Mathematical Transformation of Machine Settings from Cradle-Type to Cartesian-Type Hypoid Generator,” Key Engineering Materials, 419, pp. 365-368, 2010.
    [23] Shih, Y. P., and Fong, Z. H., “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator,” ASME J. Mech. Des., 130(6), p. 062604, 2008.
    [24] The Gleason Works, Face Hobbing Development, Rochester, NY , 2000.
    [25] 謝欣諺,傘齒輪切齒機之直傘齒輪雙連鎖碟型刀具切製法研究,碩士論文,台灣科技大學,台北,2013。
    [26] 蘇宏旻,面滾式直傘齒輪SolidWorks API切削模擬,碩士論文,台灣科技大學,台北,2013。
    [27] Radzevich, S. P., Theory of Gearing: Kinematics, Geometry, and Synthesis, CRC Press, pp. 333-334, 2012.
    [28] Siemens, “SINUMERIK 840D sl / 828D Job Planning, Programming Manual”, 2018.
    [29] Siemens, “SINUMERIK 840D sl/ 828D Fundamentals, Programming Manual”, 2012.
    [30] Shih, Y.P., “Study on the Flank Modification of Face Hobbed Hypoid Gears”, Ph.D dissertation, National Chung Cheng University, Chiayi, 2007.

    無法下載圖示 全文公開日期 2025/08/16 (校內網路)
    全文公開日期 2025/08/16 (校外網路)
    全文公開日期 2025/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE