簡易檢索 / 詳目顯示

研究生: 蕭名鈞
MING-JUN XIAO
論文名稱: 精密散射式多感測器三角雷射探頭之量測精度與可攜化改良研究
Research on the Improvement on the Measurement Accuracy and Portability of a Precision Scattered Triangulation Laser Probe with Multi-detectors
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 修芳仲
Fang-Jung Shiou
鄧昭瑞
Geo-Ry Tang
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 201
中文關鍵詞: 散射式三角雷射探頭三角雷射探頭、線電荷耦合元件 (Linear CCD)非接觸式量測系統三次元座標量測儀 (CMM)逆向工程機上量測
外文關鍵詞: scattering-based triangular laser probe, Linear Charge-Coupled device (Linear CCD), non-contact measurement system, Coordinate Measuring Machine (CMM), reverse engineering, on-machine measurement
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究延續先期精密散射式多感測器三角雷射探頭架構,研製一款改良型多感測器三角雷射探頭,於光路系統設計中,採用Scheimpflug光學成像原理為基礎 使聚焦後之散射光班於感測器表面恆聚焦成像;硬體架構以微聚焦雷射發射器為中心,周圍搭載環狀排列之六個線電荷耦合元件 (Linear CCD)感測器 。 為改善解析度、縮小探頭體積, 本研究 重新設計最佳光路參數 並 製作改良型光路系統;在雷射探頭可攜性方面,將原本分離式電路系統之 PCB版優化 及重新佈線整合於雷射探頭 ,成功應用於機上量測。
    改良型雷射探頭其量測範圍為± 1.75mm,解析度為 0.69μm,工作距離為 13.5mm 本研究 使用 LabVIEW、 Arduino軟體 開發量測系統人機介面 ,將三軸運動平台與雷射探頭 系統 整合為一非接觸式量測系統。針對不同顏色、材質之表面進行特性校驗比較各別量測性能,並根據結果應用在實務量 測,除三軸運動平台外,也將雷射探頭安裝於工具機上進行機上量測, 量測誤差 以三次元座標量測儀 (CMM)之量測結果 作為比對基準, 待測物有 白色代木階級工件、圓柱面工件 、粉色代木 30度斜面工件、 雙 階級 鍵工件、 木頭半圓球工件, 成功將非接觸式量測系統應用於硬幣掃描之逆向工程。


    This study continues the previous research on the precision scattering-based multi-sensor triangular laser probe architecture and develops an improved version of the multi-sensor triangular laser probe. In the design of the optical system, the Scheimpflug optical imaging principle is employed, which allows the scattered light beam to be focused and imaged on the sensor surface. The hardware architecture centers around a micro-focused laser emitter, surrounded by six Linear Charge-Coupled device (CCD) sensors arranged in a circular pattern. In order to improve the resolution and reduce the laser probe dimension, the optimal optical parameters are redesigned, and an improved optical system is constructed. Regarding the portability of the laser probe, the previously separate circuit system on the PCB board is optimized and integrated with the laser probe system. This modification has successfully been applied to the on-machine measurements.
    The measurement range of the improved laser probe is ±1.75mm, with a resolution of 0.69μm and a working distance of 13.5mm. A set of LabVIEW and Arduino software have been developed for the automated. The laser probe is integrated with a three-axis motion platform to construct a non-contact measurement system. Measurements for uncertainty analysis have been performed on the surfaces of different colors and materials to compare their respective performance characteristics. Based on the calibration results, the system is applied to some practical measurements.In addition to the measurements on a three-axis motion platform, the laser probe is also installed on a machine tool for on -machine measurements. The measurement errors are compared with the results obtained from a Coordinate Measuring Machine (CMM) as a reference. The test objects include white artificial wood steeped workpieces, cylindrical workpieces, a pink artificial wood workpiece with a 30-degree inclination angle, workpieces with double- steped component, and a wooden hemisphere workpiece. At the end of the study, the non-contact measurement system is successfully applied to the reverse engineering measurement of a coin scanning.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VIII 表索引 XVI 第一章 緒論 1 1.1研究動機及目的 1 1.2文獻回顧 5 1.2.1三角雷射量測法概念架構 5 1.2.2以雷射探頭建構之非接觸式量測系統 6 1.2.3雷射探頭之實例應用研究 8 1.2.4多感測器三角雷射探頭 10 1.2.5 線電荷藕荷元件 11 1.3研究方法與論文結構 12 第二章 雷射探頭量測光路設計、機構改良與理論推導 14 2.1非接觸散射式三角雷射探頭原理介紹 15 2.2光電感測器介紹及選用依據 19 2.2.1線電荷耦合元件性能指標 20 2.2.2線電荷耦合元件之可視角 24 2.3雷射探頭之機構設計與光路參數選取 25 2.3.1 Scheimpflug成像原理 25 2.3.2光路參數說明與尺寸設計 26 2.3.3探頭改良及最佳參數選用 33 2.4第一型新式探頭 33 2.4.1光路參數組合篩選 34 2.4.2第一型新式探頭性能計算與機構設計 37 2.5第二型新式探頭 42 2.6雷射探頭演算法之於不同量測模組 48 第三章 非接觸式雷射探頭之系統架構與整合 51 3.1自製雷射探頭 52 3.1.1 線電荷耦合元件 52 3.1.2 微聚焦雷射光源 54 3.1.3 聚焦雙凸透鏡 55 3.2微控制器Arduino Mega2560之Linear CCD驅動 67 3.2.1 TCD1705-D型線電荷耦合元件作動條件介紹 67 3.2.2 微控制器Arduino Mega2560硬體介紹 70 3.2.3 Timer之暫存器設定與線電荷耦合元件訊號整合 77 3.2.4 ∆Z 量測方法 81 3.3 TCD1705-D型線電荷耦合元件電路規劃 83 3.3.1 針對TCD1705-D之輸出電壓放大電路 84 3.3.2 PCB印刷電路板之線路規劃 86 3.4 PCIE數據採集卡 92 3.5運動控制系統-以三軸步進馬達驅動 96 3.6量測系統之人機介面-LabVIEW 101 3.7非接觸式雷射探頭量測系統架構 104 第四章 雷射探頭之特性校驗與實務量測 106 4.1 A/D轉換卡線性校驗 107 4.2 針對不同顏色、材質待測物之特性校驗比較 107 4.3 雷射探頭實務量測與誤差比對 128 4.3.1白色代木階級工件量測及誤差比對 130 4.3.2 圓柱面工件量測及誤差比對 135 4.3.3 30度斜面工件量測及誤差比對 138 4.3.4 木頭半圓球工件量測及誤差比對 142 4.3.5 雙階級鍵工件寬度量測及誤差比對 146 4.4 實務輪廓掃描與逆向工程表面擬合 150 第五章 結論及未來研究方向 154 5.1結論 154 5.2未來展望 156 參考文獻 159 附錄一 164 附錄二 168 附錄三 169 附錄四 170 附錄五 171 附錄六 172 附錄七 177 附錄八 178

    參考文獻
    [1] Yao, Q., Cao, M. “Design of optical emission system in 3D shape detection with oblique laser triangulation probe,” Journal of Physics: Conference Series, 1774(1), 012063, 2021.
    [2] Liu, K., Tao, W., Chen, X., Li, Z., Zhao, H. “Laser Triangulation Method for Glass Thickness by Automatically Adapting to Displacement Change,” Zhongguo Jiguang/Chinese Journal of Lasers, 47(1), 0104003, 2020.
    [3] Wu, C., Chen, B., Ye, C., Yan, X. “Modeling the influence of oil film, position and orientation parameters on the accuracy of a laser triangulation probe,” Sensors (Switzerland), 19(8), 1844, 2019.
    [4] Zhang, X., Kang, L., An, Z., Wang, R. “Improved laser triangulation probe design,” Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 47(10), 1018002, 2018.
    [5] Marani, R., Nitti, M., Cicirelli, G., D’Orazio, T., Stella, E. “Design of high-resolution optical systems for fast and accurate surface reconstruction,” Smart Sensors, Measurement and Instrumentation, 11, pp. 47-65, 2015.
    [6] Yao, B., Cai, Z., Lu,. J., Ma, X., Chen, B. “Novel laser triangulation measurement method for screw rotor profile under multi-factor constraints,” Measurement: Journal of the International Measurement Confederation, 152, 107317, 2020.
    [7] Balachandar, S., Vipin, K. “Measurement of vibration using phase only correlation technique,” Proceedings of SPIE - The International Society for Optical Engineering, 10373, 1037313, 2017.
    160
    [8] Zhou, A., Shao, W., Qu, P., Guo, J. “Calibration of a laser probe on a miniature surface morphology measurement system for a spherical shell,” Lasers in Engineering, 38(1-2), pp. 25-36, 2017.
    [9] Wang, Y., Su, P., Parks, R.E., Oh, C.J., Burge, J.H. “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Optical Engineering, 51(7), 073603, 2012.
    [10] Aguilar, J.J., Guillomía, D., Cajal, C., Brosed, F.J. “Development of a system for complex geometry parts measuring using a robot and a triangulation laser probe,” 10th International Symposium on Measurement and Quality Control 2010, ISMQC 2010, pp. 290-293, 2010.
    [11] Borangiu, T., Dogar, A., Dumitrache, A. “Modeling and simulation of short range 3D triangulation-based laser scanning system,” International Journal of Computers, Communications and Control, 3(SPL. ISS.), pp. 190-195, 2008.
    [12] Denkena, B., Wichmann, M., Heide, K.M., Räker, R. “Laser Scanning Based Object Detection to Realize Digital Blank Shadows for Autonomous Process Planning in Machining,” Journal of Manufacturing and Materials Processing, 6(1), 1, 2022.
    [13] Selak, L., Bračun, D. “Evaluation of localization systems for CNC machining of large FRPC parts,” Procedia CIRP, 81, pp. 844-849, 2019.
    [14] Do Rosario Carvalho, A.D., Vijaya, A. “Automated industrial robot arm for three-dimensional measurement and reverse engineering,” International Journal of Mechanical and Production Engineering Research and Development, 10(3), pp. 379-390, 2020.
    161
    [15] Donadello, S., Motta, M., Demir, A.G., Previtali, B. “Monitoring of laser metal deposition height by means of coaxial laser triangulation,” Optics and Lasers in Engineering, 112, pp. 136-144, 2019.
    [16] Žbontar, K., Mihelj, M., Podobnik, B., Povše, F., Munih, M. “Dynamic symmetrical pattern projection based laser triangulation sensor for precise surface position measurement of various material types,” Applied Optics, 52(12), pp. 2750-2760, 2013.
    [17] Ding, D., Zhao, Z., Huang, R., Dai, C., Zhang, X., Xu, T., Fu, Y. “Error Modeling and Path Planning for Freeform Surfaces by Laser Triangulation On-Machine Measurement,” IEEE Transactions on Instrumentation and Measurement, 70, 9369327, 2021.
    [18] 陳信宏陳信宏,, “雷射探頭整合於電腦控制四軸機台做小型元件之逆向雷射探頭整合於電腦控制四軸機台做小型元件之逆向工程量測工程量測”,,國立台灣科技大學機械工程所碩士論文國立台灣科技大學機械工程所碩士論文,,2003。。
    [19] 孫孟君孫孟君,, “雷射探頭整合於三軸微定位平台作介觀尺寸工件自動雷射探頭整合於三軸微定位平台作介觀尺寸工件自動化量測之研究化量測之研究”,,國立台灣科技大學機械工程所碩士論文國立台灣科技大學機械工程所碩士論文,,2006。。
    [20] 劉旻欣劉旻欣,, “精密散射式多感測器三角雷射探頭之研製精密散射式多感測器三角雷射探頭之研製”,,碩士論碩士論文,國立台灣科技大學,文,國立台灣科技大學,2007。。
    [21] 張元澤張元澤,, “精密散射式多感測器三角雷射探頭之改良研究精密散射式多感測器三角雷射探頭之改良研究”,,國國立台灣科技大學立台灣科技大學機機械工程所碩士論文,械工程所碩士論文,2019。。
    [22] 麥惟誠麥惟誠,, ”精密散射式多感測器三角雷射探頭之電路設計與量測精密散射式多感測器三角雷射探頭之電路設計與量測精度改良研究精度改良研究”,,國立台灣科技大學國立台灣科技大學機機械工程所碩士論文械工程所碩士論文,,2020。。
    [23] 李瑞宗李瑞宗,, “量測平滑曲面位置與法向量之多光束三角雷射探頭研量測平滑曲面位置與法向量之多光束三角雷射探頭研
    162

    究”,,博士論文博士論文,,國立國立台灣科技大學台灣科技大學,,2010。。
    [24] He, Y., Zhang, Y., Xie, G., Duan, L., Zhang, H. “Target Plane Positioning Method Based on Bi-Linear Charge Coupled Device,” Laser and Optoelectronics Progress, 59(22), 2212001, 2022.
    [25] Kang, Z., Liu, J., Sun, S., Pu, P., Niu, J., Ma, S. “Design of linear CCD acquisition system based on high-resolution spectrometer,” Journal of Applied Optics, 43(5), pp. 864-869, 2022.
    [26] N.N., Handbook for LB-70(W) Series Instruction Manual, KEYENCE Company (Japan), 1992.
    [27] GFM, Lasertriangulation ITS - Intelligente Triangulations Systeme, http://www.gfm-aachen.de
    [28] N.N. Integration Handbook for Optoelectronic Distance Measuring System OTM3, Wolf&Beck Sensorik Company, Germany.
    [29] KEYENCE,感測器影像系統,,感測器影像系統,http://www.keyence.com.tw
    [30] 用鏡頭享受生命,用鏡頭享受生命,https://digiphoto.techbang.com/
    [31] 莊葆華莊葆華, “非接觸雷射探頭研製非接觸雷射探頭研製”, 機械月刊第二十二卷第二機械月刊第二十二卷第二期期 ,pp.149-155, 1996.
    [32] Toshiba,,Linear Image Sensor,,1999.
    [33] 耿繼業,何建娃,幾何光學,全華科技圖書股份有限公司,耿繼業,何建娃,幾何光學,全華科技圖書股份有限公司,2001.
    [34] 行政院國家科學委員會精密儀器發展中心,光學鏡片製作與檢行政院國家科學委員會精密儀器發展中心,光學鏡片製作與檢測實用技術,測實用技術,2003.
    [35] Miceochip,,Atmega2560,, https://www.microchip.com/
    163
    [36] Arduino教學系列,教學系列, http://coopermaa2nd.blogspot.com/
    [37] 研華科技,研華科技,PCIE-1816,, https://www.advantech.tw/
    [38] National Instrument,,PCI-7344,,http://www.ni.com/zh-tw.html
    [39] National Instrument,,UMI-7764,,http://www.ni.com/zh-tw.html
    [40]台灣東方馬達台灣東方馬達,,PKP546MN18A五相步進馬達,五相步進馬達,https://www.orientalmotor.com.tw/
    [41] TROY,,TR515B,,http://www.sunholy.com.tw/default_en.asp
    [42] Quaser,,UX300,,https://www.quaser.com/tw
    [43] Mitutoyo Geopak-Window操作手冊,台灣三豐儀器股份有限公司操作手冊,台灣三豐儀器股份有限公司。。
    [44]程序员小白学开发程序员小白学开发,,最小二乘法拟合圆拟合球公式推导及最小二乘法拟合圆拟合球公式推导及matlab实现,实现,https://blog.csdn.net/weixin_43198881/article/details/103817694
    [45]H Anton,C Rorres,(2005), Elementary Linear Algebra with Applications, Wiley
    [46]程序员小白学开发程序员小白学开发,,最小二乘法拟合球及其相关代码实现最小二乘法拟合球及其相关代码实现,,https://blog.csdn.net/woniu199166/article/details/79108269
    [47] 千年代千年代,,matlab使用最小二乘法拟合平面使用最小二乘法拟合平面,,https://www.jianshu.com/p/216495b53050

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 2025/08/25 (校外網路)
    全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE