簡易檢索 / 詳目顯示

研究生: 陳尤賢
You-Shian Chen
論文名稱: 應用機器學習方法於樹脂砂生產配方最佳化
Applying Machine Learning Approach for Resin Sand Quality Prediction and Recipe Optimization
指導教授: 曹譽鐘
Yu-Chung Tsao
口試委員: 王孔政
Kung-Jeng Wang
許嘉裕
Chia-Yu Hsu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 76
中文關鍵詞: 機器學習生產製程品質預測樹脂砂特徵篩選
外文關鍵詞: Machine Learning, Production Process, Quality Prediction, Resin Sand, Feature Selection
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器學習是人工智能的一個分支,它讓電腦能夠在無需編寫大量程序的情況下進行學習,即電腦可以累積「經驗」並自動搜索信息以捕捉規律和趨勢。在現代製造業中,確保產品品質的穩定性,對於企業的競爭力至關重要,而機器學習在製造業品質預測上的應用更為企業提供了更可靠和準確地品質控制手段,在本研究中,我們將機器學習方法應用於預測樹脂砂生產過程的品質,數據來自台灣的一家樹脂砂生產廠。利用生產設備的過程參數來預測未來生產的品質。選擇矽砂類型、樹脂比例、混合溫度和批量加熱作為輸入,以預測輸出(顆粒大小、抗彎強度、均勻點和落試驗)並使用最佳結果優化配方。本研究採用了多種機器學習方法來預測品質。此外,還考慮了不同特徵選擇方法的優缺點。結果顯示,根據不同的特點,其最佳的模型結果不太相同,若是以可解釋性來說,基於K-Means Clustering 的Recurrent Neural Network 具有更優越的模型解釋性。但若以準確度來比較,Filter Support Vector Regression 有較精準的準確度,通過比較經驗配方和人工智能推薦配方,我們還發現AI 推薦的配方實現了更高且更穩定的品質。


    Machine learning, a subfield of artificial intelligence, enables computers to learn
    without the need for extensive programming, allowing them to accumulate
    "experience" and automatically search for information to capture patterns and trends.
    In the realm of modern manufacturing, the assurance of product quality stability is
    crucial to a company's competitiveness. The application of machine learning in
    predicting manufacturing quality equips enterprises with more reliable and precise
    means of quality control. In this study, we apply machine learning methods to predict
    the quality of the resin sand production process, with data collected from a resin sand
    manufacturer in Taiwan. Process parameters of the production equipment are utilized
    to predict the quality of future production. The type of silica sand, resin ratio, mixing temperature, and batch heating are selected as inputs to predict the outputs (particle size, flexural strength, uniformity point, and drop test) and optimize the formulation using the best results. This study employs various machine learning methods to predict quality, including Support Vector Regression, Random Forest, eXtreme Gradient Boosting, Recurrent Neural Network, Long Short-Term Memory, and Gated Recurrent Unit.
    Additionally, different feature selection methods' advantages and disadvantages are
    considered. The results show that the optimal model outcome varies depending on the
    specific features; if interpretability is the main criterion, the K-Means Clustering based RNN demonstrates superior model interpretability. However, if accuracy is the main concern, Filter Support Vector Regression exhibits higher precision. By comparing
    experience-based formulations and artificial intelligence-recommended formulations,
    we also find that AI-recommended formulations achieve higher and more stable quality.

    摘要............................................................... I ABSTRACT ........................................................... II CONTENT ............................................................ III LIST OF FIGURES .................................................... V LIST OF TABLES ..................................................... VI CHAPTER 1 INTRODUCTION ............................................. 1 1.1 Background and Motivation ....................................... 1 1.2 Research Objective .............................................. 4 1.3 Research Organization .......................................... 4 CHAPTER 2 LITERATURE REVIEW ........................................... 6 2.1 Application of Quality Prediction in the Manufacturing Industry ..... 6 2.2 Machine Learning for Quality Prediction ........................... 7 2.3 Feature Selection ................................................... 9 CHAPTER 3 METHDOLOGY ................................................... 10 3.1 Research Flow and Structure ................................... 10 3.2 Data Collection and Data Preprocessing ........................ 12 3.2.1 Data Collection ................................................ 12 3.2.2 Data Preprocessing ........................................ 13 3.2.3 Data Augmentation .......................................... 13 3.3 Feature Engineering ................................................ 15 3.3.1 Filter Method ....................................................... 15 3.3.2 Wrapper Method .................................................. 16 3.3.3 Embedded Method ............................................. 17 3.4 Modeling .......................................................... 18 3.4.1 Support Vector Regression ( SVR ) ................................18 3.4.2 Random Forest ................................................. 19 3.4.3 Extreme Gradient Boosting ( XGBoost ) ............................ 20 3.4.4 Long Short-Term Memory ( LSTM ) ............................. 21 3.4.5 Gated Recurrent Unit ( GRU ) ..................................... 22 3.5 Model Evaluation .................................................. 22 CHAPTER 4 NUMERICAL EXPERIMENTS ..................................... 26 4.1 Feature Engineering Analysis ..................................... 27 4.1.1 Pearson correlation............................................. 29 4.1.2 Recursive Feature Elimination ................................... 30 4.1.3 Select From Model .............................................. 31 4.2 Resin Sand Quality Prediction Approach ..................................... 32 4.3 Feature selection method parameter combinations ............................ 50 4.4 K-Means based Resin Sand Quality Prediction Approach ...................... 52 CHAPTER 5 CONCLUSIONS ........................................................ 61 5.1 Conclusions and Contribution ............................................ 61 5.2 Research Limitation and Future Suggestions ................................. 63 REFERENCE ................................................................... 65

    Bai, Y., Sun, Z., Deng, J., Li, L., Long, J., & Li, C. (2017). Manufacturing quality prediction
    using intelligent learning approaches: A comparative study. Sustainability,
    10(1), 85.
    Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
    Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep learning-based crack damage
    detection using convolutional neural networks. Computer-Aided Civil and
    Infrastructure Engineering, 32(5), 361-378.
    Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods.
    Computers & Electrical Engineering, 40(1), 16-28.
    Chate, G. R., Patel, G. M., Kulkarni, R. M., Vernekar, P., Deshpande, A. S., &
    Parappagoudar, M. B. (2018). Study of the effect of nano-silica particles on
    resin-bonded moulding sand properties and quality of casting. Silicon, 10,
    1921-1936.
    Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings
    of the 22nd acm sigkdd international conference on knowledge discovery and
    data mining,
    Chen, X.-w., & Jeong, J. C. (2007). Enhanced recursive feature elimination. Sixth
    international conference on machine learning and applications (ICMLA 2007),
    Chumachenko, D., Turiy, A., & Chukhray, A. (2019). Application of statistical simulation
    for measles epidemic process forecasting. 2019 IEEE 2nd Ukraine Conference
    on Electrical and Computer Engineering (UKRCON),
    Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
    recurrent neural networks on sequence modeling. arXiv preprint
    arXiv:1412.3555.
    El Naqa, I., & Murphy, M. J. (2015). What is machine learning? Springer.
    Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU neural network methods for
    traffic flow prediction. 2016 31st Youth Academic Annual Conference of
    Chinese Association of Automation (YAC),
    Guo, R., Zhao, Z., Wang, T., Liu, G., Zhao, J., & Gao, D. (2020). Degradation state
    recognition of piston pump based on ICEEMDAN and XGBoost. Applied Sciences,
    10(18), 6593.
    Haghiabi, A. H., Nasrolahi, A. H., & Parsaie, A. (2018). Water quality prediction using
    machine learning methods. Water Quality Research Journal, 53(1), 3-13.
    Hota, H., Handa, R., & Shrivas, A. K. (2017). Time series data prediction using sliding
    window based RBF neural network. International Journal of Computational
    Intelligence Research, 13(5), 1145-1156.
    Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality
    predictions. Environmental Science and Pollution Research, 23, 22408-22417.
    Lieber, D., Stolpe, M., Konrad, B., Deuse, J., & Morik, K. (2013). Quality prediction in interlinked manufacturing processes based on supervised & unsupervised
    machine learning. Procedia Cirp, 7, 193-198.
    Mahalingam, U., Elangovan, K., Dobhal, H., Valliappa, C., Shrestha, S., & Kedam, G.
    (2019). A machine learning model for air quality prediction for smart cities.
    2019 International conference on wireless communications signal processing
    and networking (WiSPNET),
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
    nervous activity. The bulletin of mathematical biophysics, 5, 115-133.
    Nada, O. A., ElMaraghy, H. A., & ElMaraghy, W. H. (2006). Quality prediction in
    manufacturing system design. Journal of Manufacturing systems, 25(3), 153-
    171.
    Olah, C. (2015). Understanding lstm networks.
    Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
    and organization in the brain. Psychological review, 65(6), 386.
    Shewalkar, A., Nyavanandi, D., & Ludwig, S. A. (2019). Performance evaluation of deep
    neural networks applied to speech recognition: RNN, LSTM and GRU. Journal
    of Artificial Intelligence and Soft Computing Research, 9(4), 235-245.
    Unler, A., Murat, A., & Chinnam, R. B. (2011). mr2PSO: A maximum relevance minimum
    redundancy feature selection method based on swarm intelligence for support
    vector machine classification. Information Sciences, 181(20), 4625-4641.
    Wang, C., Huang, Y., Shao, M., Hu, Q., & Chen, D. (2019). Feature selection based on
    neighborhood self-information. IEEE Transactions on Cybernetics, 50(9), 4031-
    4042.
    Wang, K., Gopaluni, R. B., Chen, J., & Song, Z. (2018). Deep learning of complex batch
    process data and its application on quality prediction. IEEE Transactions on
    Industrial Informatics, 16(12), 7233-7242.
    Werbos, P. J. (1994). The roots of backpropagation: from ordered derivatives to neural
    networks and political forecasting (Vol. 1). John Wiley & Sons.
    Yahmed, Y. B., Bakar, A. A., RazakHamdan, A., Ahmed, A., & Syed Abdullah, S. M. (2015).
    ADAPTIVE SLIDING WINDOW ALGORITHM FOR WEATHER DATA
    SEGMENTATION. Journal of Theoretical & Applied Information Technology,
    80(2).
    Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A comparison between arima, lstm, and gru for time series forecasting. Proceedings of the 2019 2nd International
    Conference on Algorithms, Computing and Artificial Intelligence,

    無法下載圖示 全文公開日期 2033/07/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE