簡易檢索 / 詳目顯示

研究生: 彭大倫
Ta-Lun Peng
論文名稱: 基於鋼構廠生產線模擬生成資料之大數據分析研究
Big Data Analysis Based on the Massive Data Generated by Simulating the Production Line of the Steel Structure Factory
指導教授: 陳鴻銘
Hung-Ming Chen
口試委員: 廖國偉
Kuo-Wei Liao
謝佑明
Yo-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 大數據分析鋼構廠深度學習機器學習
外文關鍵詞: Big data analytics, Steel Structure Factory, Deep Learning, Machine Learning
相關次數: 點閱:485下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網路社群與物聯網等技術的蓬勃發展所不斷產生與累積大量的數據,世界迎來了大數據的時代,各行各業都有應用大數據可能,藉由分析技術從大數據中找出各式應用的可能。另一方面,近年來隨著數據量的不斷增長與電腦計算能力之持續提升,已發展出了大數據分析的各式演算法如深度學習,深度學習在大數據預測分析之應用發揮了關鍵作用,也取得優秀成果,產品大量製造的高科技產業已成功將深度學習的技術應用於產能預測。營建產業之產品具有客製化之特性,施作過程較少有數位化的資料紀錄與自動化的機器加工,且多倚賴大量人力,因此大數據分析技術的應用在營建產業有其困難度,鋼構廠是營建產業中少有較具固定生產流程與標準化製造模式的供應商,具潛力作為大數據分析應用之可能的研究目標。故本研究嘗試大數據分析應用於鋼構廠柱一次生產線可能,以電腦模擬的技術針對鋼構廠柱一次生產線建立虛擬工廠,虛擬工廠可模擬鋼構廠生產線的作業流程,再配合對收集多個實際鋼結構BIM模型案例所拆解出大量鋼構構件所構成的桿件池做隨機取樣,所產生大量的生產案例配置,即可透過所建立的虛擬工廠模擬出這些大量案例的生產過程履歷,再以深度學習技術基於大量的模擬案例預測鋼構廠之產能,並與機器學習方法之預測結果比較,對大數據分析應用於鋼構廠產能預測的可能性進行初探。


    With the vigorous development of the Internet community and the Internet of Things, a large amount of data has been continuously generated and accumulated. The world has ushered in the era of big data. It is possible to apply big data in various fields and use analysis techniques to find out the possibilities of various applications from big data. On the other hand, with the continuous increase of data volume and the continuous improvement of computer computing power in recent years, various algorithms for big data analytics such as deep learning have been developed. Deep learning has played a key role in the application of big data analytics for predictive analysis, and has also achieved excellent results. The high-tech industry, which manufactures products in large quantities, has successfully applied deep learning technology for predicting production capacity. The productions of the construction industry have the characteristics of customization, lacking of digital data records and machinery automation in the construction process, and relying on a lot of manpower. Therefore, the application of big data analytics in the construction industry has its difficulties. The steel structure factory is one of the few suppliers in the construction industry that has a relatively fixed production process and a standardized manufacturing model. Thus, it has the potential to be a possible research target for the application of big data analytics. Therefore, this research explores the possibility of applying big data analytics to the box column production line of a steel structure factory. Computer simulation technology is adopted to establish a virtual factory for the box column production line of a steel structure factory. Several steel structure BIM models are disassembled to produce a large number of steel structure members that form a pool of components. By randomly sampling the components in the pool, a large number of production case configurations can then be automatically generated. The production processes of these cases can obtained by simulation using the established virtual factory. Deep learning is then applied to predict the production capacity of a steel structure factory based on these simulated cases. The prediction results and compare with the results of machine learning methods to explore the possibility of applying big data analysis to the production capacity prediction of a steel structure factory.

    論文摘要 I ABSTRACT II 誌謝 III 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 6 1.3 研究範圍 7 1.4 研究方法 7 1.5 論文架構 9 第二章 文獻回顧 10 2.1 相關研究發展 10 2.1.1 大數據 10 2.1.2 半導體產業之大數據預測分析 12 2.1.3 大數據在營建產業應用 12 2.1.4 人工智慧發展 13 2.1.5 大數據應用深度學習 14 2.2 系統開發工具 15 2.2.1 Python 15 2.2.2 Keras 16 2.2.3 Scikit-learn 17 第三章 研究方法 19 3.1 深度學習 19 3.1.1 深度神經網路 19 3.2 機器學習 23 3.2.1 回歸樹 23 3.2.2 自適應增強 25 3.2.3 支援向量機回歸 26 3.3 模型評估指標 28 3.4 交叉驗證 30 第四章 生產案例之大數據生成 32 4.1 桿件池建置 32 4.1.1 Tekla模型資料擷取 32 4.1.2 BOX柱資料補齊 34 4.1.3 桿件池成果 36 4.2 虛擬鋼構廠模擬生產 36 4.2.1 模擬之時間計算 36 4.2.2 桿件池抽樣生產模擬案例 38 4.3 資料整理及前處理 39 第五章 預測模型建立 43 5.1 深度學習-研究目標模型 43 5.1.1 深度神經網路模型 43 5.1.2 DNN各階段模型比較 50 5.1.3 K-fold交叉驗證 54 5.2 機器學習-研究對照模型 55 5.2.1 回歸樹模型 55 5.2.2 自適應增強模型 56 5.2.3 支援向量機回歸模型 57 5.3 模型比較 59 第六章 系統使用情境 60 6.1 預測模型使用 60 第七章 結論與未來展望 62 7.1 結論 62 7.2 未來展望 63 參考文獻 64

    [1] J. Lee, E. Lapira, B. Bagheri, and H.-a. Kao, "Recent advances and trends in predictive manufacturing systems in big data environment," Manufacturing letters, vol. 1, no. 1, pp. 38-41, 2013.
    [2] A. Gandomi and M. Haider, "Beyond the hype: Big data concepts, methods, and analytics," International journal of information management, vol. 35, no. 2, pp. 137-144, 2015.
    [3] J. Moyne and J. Iskandar, "Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing," Processes, vol. 5, no. 3, p. 39, 2017.
    [4] 黃崧哲, "整合 BIM與 BLE 定位技術之鋼結構構件生產履歷與品保資料收集系統自動化應用," 國立臺灣科技大學營建工程系碩士學位論文, 2019.
    [5] 何宇倫, "離散事件模擬於鋼構廠生產線作業之最佳化應用-以柱一次加工為例," 國立臺灣科技大學營建工程系碩士學位論文, 2019.
    [6] 梁詠晴, "應用AnyLogic於鋼構廠生產線之模擬暨三維視覺化展示-以柱一次加工為例," 國立臺灣科技大學營建工程系碩士學位論文, 2019.
    [7] D. Laney, "3D data management: Controlling data volume, velocity and variety," META group research note, vol. 6, no. 70, p. 1, 2001.
    [8] M. A. Beyer and D. Laney, "The importance of ‘big data’: a definition," Stamford, CT: Gartner, pp. 2014-2018, 2012.
    [9] IBM Big Data&Analytics Hub,, "The Four V's of Big Data," https://www.ibmbigdatahub.com/infographic/four-vs-big-data.
    [10] A. Kusiak, "Smart manufacturing must embrace big data," Nature, vol. 544, no. 7648, pp. 23-25, 2017.
    [11] J. Iskandar, J. Moyne, K. Subrahmanyam, P. Hawkins, and M. Armacost, "Predictive maintenance in semiconductor manufacturing," in 2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2015: IEEE, pp. 384-389.
    [12] S. Munirathinam and B. Ramadoss, "Big data predictive analtyics for proactive semiconductor equipment maintenance," in 2014 IEEE International Conference on Big Data (Big Data), 2014: IEEE, pp. 893-902.
    [13] J. Moyne, J. Samantaray, and M. Armacost, "Big data capabilities applied to semiconductor manufacturing advanced process control," IEEE transactions on semiconductor manufacturing, vol. 29, no. 4, pp. 283-291, 2016.
    [14] W. Lu, X. Chen, D. C. Ho, and H. Wang, "Analysis of the construction waste management performance in Hong Kong: the public and private sectors compared using big data," Journal of Cleaner Production, vol. 112, pp. 521-531, 2016.
    [15] M. Bilal et al., "Analysis of critical features and evaluation of BIM software: towards a plug-in for construction waste minimization using big data," International Journal of Sustainable Building Technology and Urban Development, vol. 6, no. 4, pp. 211-228, 2015.
    [16] L. Tian, H. Wang, Y. Zhou, and C. Peng, "Video big data in smart city: Background construction and optimization for surveillance video processing," Future Generation Computer Systems, vol. 86, pp. 1371-1382, 2018.
    [17] Y. Zhang, H. Luo, and Y. He, "A system for tender price evaluation of construction project based on big data," Procedia Engineering, vol. 123, pp. 606-614, 2015.
    [18] M. Bilal et al., "Big Data in the construction industry: A review of present status, opportunities, and future trends," Advanced engineering informatics, vol. 30, no. 3, pp. 500-521, 2016.
    [19] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943.
    [20] A. L. Samuel, "Some studies in machine learning using the game of checkers. II—Recent progress," IBM Journal of research and development, vol. 11, no. 6, pp. 601-617, 1967.
    [21] B. Widrow and M. E. Hoff, "Adaptive switching circuits," Stanford Univ Ca Stanford Electronics Labs, 1960.
    [22] B. Schlkopf, A. J. Smola, and F. Bach, Learning with kernels: support vector machines, regularization, optimization, and beyond. the MIT Press, 2018.
    [23] C.-C. Ku and K. Y. Lee, "Diagonal recurrent neural networks for dynamic systems control," IEEE transactions on neural networks, vol. 6, no. 1, pp. 144-156, 1995.
    [24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    [25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
    [26] I. Goodfellow et al., "Generative adversarial nets," in Advances in neural information processing systems, 2014, pp. 2672-2680.
    [27] M. Copeland, "What’s the Difference Between Artificial Intelligence, Machine Learning and Deep Learning?," https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/.
    [28] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, "Deep learning applications and challenges in big data analytics," Journal of Big Data, vol. 2, no. 1, p. 1, 2015.
    [29] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, "A survey of deep neural network architectures and their applications," Neurocomputing, vol. 234, pp. 11-26, 2017.
    [30] G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal processing magazine, vol. 29, no. 6, pp. 82-97, 2012.
    [31] J. Gonzalez-Dominguez, I. Lopez-Moreno, P. J. Moreno, and J. Gonzalez-Rodriguez, "Frame-by-frame language identification in short utterances using deep neural networks," Neural Networks, vol. 64, pp. 49-58, 2015.
    [32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009: Ieee, pp. 248-255.
    [33] Y. Pan et al., "Brain tumor grading based on neural networks and convolutional neural networks," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015: IEEE, pp. 699-702.
    [34] python, "[Online], Available:https://www.python.org/."
    [35] Keras, "[Online], Available:https://keras.io/."
    [36] Scikit-learn, "[Online], Available:https://scikit-learn.org/stable/."
    [37] Scikit-learn, "Choosingthe right estimator:," https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html.
    [38] S. Sugiyama, Human Behavior and Another Kind in Consciousness: Emerging Research and Opportunities. IGI Global, 2019, p. 102.
    [39] Scikit-learn, "Maximum margin separating hyperplane, http://lijiancheng0614.github.io/scikit-learn/auto_examples/linear_model/plot_sgd_separating_hyperplane.html."
    [40] "SVR , https://www.saedsayad.com/support_vector_machine_reg.htm."
    [41] "SVM, http://crdd.osdd.net/raghava/rbpred/home.html."

    [42] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, pp. 315-323.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2025/08/26 (校外網路)
    全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE