簡易檢索 / 詳目顯示

研究生: 藍翊心
Yi-Hsin Lan
論文名稱: 新型含溴側基之聚并咪唑高分子共聚物合成及表徵應用於高溫質子交換膜燃料電池之研究
Synthesis and Characterization of Bromine-containing Polybenzimidazole Copolymers for High-temperature Proton Exchange Membrane Fuel Cells
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 游進陽
Chin-Yang Yu
王英靖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 聚并咪唑質子交換膜燃料電池單電池功率密度
外文關鍵詞: Polybenzimidazole、Proton exchange membrane fuel
相關次數: 點閱:397下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究將溴基導入含有二苯醚基的二酸中,成功合成出一種新型的二酸單體2,2’-dibromo-4,4’-oxybis(benzoic acid) (1),並利用此新型二酸單體與聯苯四胺(3,3’-diaminobenzidine)在聚磷酸(PPA)中進行高溫關環反應,合成新型聚并咪唑(OPBI-Br, PBI-1),除此之外,並利用此新型二酸分別和間-苯二酸(Isophthalic acid)和對-苯二酸(Terephthalic acid)為二酸單體,依不同比例混合,與聯苯四胺(3,3’-diaminobenzidine),合成新型聚并咪唑共聚物(PBI-2~PBI-7),並且對高分子進行表徵,PBI-1~PBI-7的固有黏度(分子量)在0.60~1.58之間,並且具有良好的熱穩定性,其熱裂解溫度Td10%介於459~514℃,在800℃時的char yield為55~71%。此外,利用有機溶劑進行成膜加工並進行磷酸摻雜,由於側基的導入使溶解度增加,除了PBI-7,皆可製備柔軟而透明之薄膜,且薄膜的氧化穩定性良好,在長時間的Fenton test後殘餘重量介於67~91%。PBI-1~PBI-6薄膜的磷酸摻雜水準(ADL)介於7.1~14.4,在160℃下的質子傳導率介於0.58~1.67 S/cm,單電池之功率密度最高可達到140~290 mW/cm2,開路電壓介於0.36~0.45 V,皆為質子交換膜燃料電池可使用範圍。


To start with, an novel dicarboxylic acid containing bromine as side group and ether linkage was synthesized from the bromination of 4,4’-oxybis(benzoic acid). Next, a bromine-containing polybenzimidazole was synthesized from 2,2’-dibromo-4,4’-oxybis(benzoic acid)(1) and 3,3’-diaminobenzidine. In addition, a series of poly(aryl ether benzimidazole) copolymers bearing different m-phenylene /p-phenylene linkage contents were synthesized by condensation polymerization in polyphosphoric acid (PPA) by varying the feed ratio of isophthalic acid/ terephthalic acid to 2,2’-dibromo-4,4’-oxybis(benzoic acid)(1). Finally, the characterization of the pristine polymer and the other copolymers were discussed. The inherent viscosities of PBI-1~PBI-7 between 0.60~1.58, and they have good thermal stabilities. The 10% weight loss temperature of the polymers were between 459~514℃, and the results show char yield at 800 ℃ were in the range of 55~71%.
On the other hand, the synthesized PBIs samples except PBI-7 present good solubility in polar aprotic solvents. They are easy to form the transparent, flexible and tough films by solution casting due to introduction of side groups. It was found that these membranes show good oxidative stabilities. The residual weight of these samples were 67~91% after immersing the membrane samples in 68 ℃ hot 3% H2O2 aqueous solution containing 4 ppm Fe2+ before the membranes were broken. The acid doping levels of PBI-1~PBI-6 were between 7.1~14.4. PBI-1~PBI-6 have a conductivity between 0.58~1.67 S/cm at 160℃. The maximum power densities could reach 140 to 290 mW/cm2. The single cell test exhibits a open circuit voltage of 0.36~0.45 V. The PBI membranes with high proton conductivities show potential application as the high temperature proton exchange membrane in fuel cell.

中文摘要 I Abstract II 誌謝 III 目錄 IV Figure索引 VI Scheme索引 VIII Table索引 IX 第一章 緒論 1 1.1前言: 1 1.2文獻回顧: 2 1.2.1 PEMFC簡介 2 1.2.2質子交換膜簡介 3 1.2.3 質子傳導機制 7 1.2.4 聚并咪唑之簡介 8 1.3研究動機與目的 20 第二章 實驗 22 2.1實驗儀器 22 2.2實驗藥品 23 2.3單體合成 24 2.4高分子合成 25 2.4.1 以聚磷酸(PPA)製程合成OPBI-Br(高分子沉澱) 25 2.4.2 以聚磷酸(PPA)製程合成OPBI-Br(Sol-gel法) 26 2.4.3 以聚磷酸(PPA)製程合成OPBI-BrX-mY (高分子沉澱) 26 2.4.4 以聚磷酸(PPA)製程合成OPBI-BrX-pY (高分子沉澱) 27 2.5 質子交換膜之製備 27 2.6 聚并咪唑之物性與化性分析 28 2.6.1 傅立葉紅外線光譜分析(FTIR) 28 2.6.2微差熱掃描分析 (DSC) 28 2.6.3熱重分析(TGA) 28 2.6.4 固有黏度(Inherent viscosity)測試 28 2.6.5 溶解度測試 29 2.6.6磷酸摻雜量測試 29 2.6.7氧化安定性測試 30 2.6.8 機械強度測試 30 2.6.9 質子傳導率測試 31 2.6.10 單電池測試 31 第三章 結果與討論 34 3.1 單體合成與表徵 34 3.2 聚并咪唑之合成 42 3.3聚并咪唑之性質表徵 44 3.4聚并咪唑之質子傳導率 62 3.5聚并咪唑之單電池性質 64 第四章-結論 66 第五章-參考文獻 67

1. R. Vandenbosch and S. E. Vandenbosc, Nuclear waste stalemate 2007.
2. 黃振江,燃料電池(修訂版),滄海書局 2005, 3.
3. 莊士緯,國立成功大學材料科學及工程所博士論文 2008, 5.
4. X. H. Wang, Y. Chen, H. G. Pan, R. G. Xu, S. Q. Li, L. X. Chen, C. P. Chen and Q. D. Wang, J. Alloys Compd .1999, 293, 833.
5. F. Alcaide, E. Brillas and P. L. Cabot, J. Electrochem. Soc. 1998, 145, 3444.
6. N. A. Popovich and R. Govind, J. Power Source. 2002, 112, 36.
7. R. H. Song, D. R. Shin and S. Dheenadayalan, J. Power Source. 2002, 107, 98.
8. H. F. Oetjen, V. M. Schmidt, U. Stimming and F. Trila, J. Electrochem. Soc. 1996, 143, 3838.
9. K. Janowitz, M. Kah and H. Wendt, Electrochim Acta. 1999, 45, 1025.
10. S. F. Corbin and X. Qiao, J. Am. Ceram. Soc. 2003, 86, 401.
11. R. J. Gorte, S. Park, J. M. Vohs and C. H. Wang, Adv. Mater. 2000, 12, 1465.
12. S. J. Peighambardoust, S. Rowshanzamir and M. Amjadi, Int. J. Hydrogen Energy 2010, 35, 9349.
13. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci. 2005, 259, 10.
14. J. Ramkumar, Functional Materials 2012.
15. N. Agmon, Chem. Phys. Lett. 1995, 244, 456.
16. Q. F. Li, R. H. He, R. W. Berg, H. A. Hjuler and N. J. Bjerrum, Solid State Ionics 2004, 168, 177.
17. F. S. Model and L. A. Lee, Org. Coat. Plast. Chem. 1972, 32, 383.
18. T. S. Chung and P. N. Chen, Polym. Eng. Sci. 1990, 30, 1.
19. D. Hoel and E. Greenwald, J. Phys. Chem. 1977, 81, 2135.
20. M. B. Gieselman and J. R. Reynolds, Macromolecules 1993, 26, 5633.
21. 陳志成,國立中山大學材料科學研究所碩士論文 2000, 6.
22. H. Vogel and C. S. Marvel, J. Polym. Sci. 1961, 50, 511.
23. Y. Imai, K. Uno and Y. Iwakura, Macromol. Chem. Phys. 1965, 83, 179.
24. J. S. Wainright, M. H. Litt and R. F. Savinell, Handbook of Fuel Cells: Fundamentals, Technology, Applications, Wiley 2003.
25. M. Litt, R. Ameri, Y. Wang, R. Savinell and J. Wainwright, Mater. Res. Soc. Symp. Proc. 1999, 548, 313.
26. 劉彥群,國立台灣科技大學材料科學與工程所博士論文 2012, 11.
27. E. W. Choe and N. J. Randolf, U.S. Patent 4.312.976, 1982.
28. R. Bouchet and E. Siebert, Solid State Ionics 1999, 118, 287.
29. Y. L. Ma, J. S. Wainright, M. H. Litt and R. F. Savinell, J. Electrochem. Soc. 2004, 151, A8.
30. H. Pu and G. Liu, Polym. Adv. Technol. 2004, 15, 726.
31. J. S. Wainright, J. -T. Wang, D. Weng, R. F. Savinell and M. Litt, J. Electrochem.Soc. 1995, 142, L121.
32. X. Glipa, M. E. Hadda, D. J. Jones and J. Roziere, Solid State Ionics 1997, 145, 61.
33. X. Glipa, B. Bonnet, B. Mula, D. J. Jones and J. Roziere, J. Mater. Chem. 1999, 9, 3045.
34. B. Xing and O. Savadogo, J. New Mater. Electrochem. Syst. 1999, 2, 95.
35. M. Kawahara, J. Morita, M. Rikukawa, K. Sanui and N. Ogata, Electrochim.Acta 2000, 45, 1395.
36. Q. Li, H. A. Hjuler and N. J. Bjerrum, J. Appl. Electrochem. 2001, 31, 773.
37. J. J. Fontanella, M. C. Wintersgill, J. S. Wainright, R. F. Savinell and M. Litt, Electrochim. Acta 1998, 43, 1289.
38. H. Pu, W. H. Meyer and G. Wegner, J. Polym. Sci., Part B, Polym. Phys. 2002, 40, 663.
39. H. Akita, M. Ichikawa, K. Nosaki, H. Oyanagi and M. Iguchi, U.S. Patent 6.124.060, 2000.
40. J. A. Kerres, J. Membr. Sci. 2001, 185, 3.
41. R. He, Q. Li, G. Xiao and N. J. Bjerrum, J. Membr. Sci. 2003, 226, 169.
42. J.-T. Wang, S. Wasmus and R. F. Savinell, J. Electrochem. Soc. 1996, 143, 1233.
43. S. R. Samms, S. Wasmus and R. F. Savinell, J. Electrochem. Soc. 1996, 143, 1225.
44. D. Weng, J. S. Wainright, U. Landau and R. F. Savinell, J. Electrochem. Soc. 1996, 143, 1260.
45. X. Ren, W. Henderson and S. Gottesfeld, J. Electrochem. Soc. 1997, 144, L267.
46. M. Litt, R. Ameri, Y. Wang, R. Savinell and J. Wainwright, Mater. Res. Soc. Symp. Proc. 1999, 548, 313.
47. S. K. Zecevic, J. S. Wainright, M. H. Litt, S. Lj. Gojkovic and R. F. Savinell, J. Electrochem. Soc. 1997, 144, 2973.
48. Q. Li, H. A. Hjuler and N. J. Bjerrum, Electrochim. Acta 2000, 45, 4219.
49. J. -T. Wang, R. F. Savinell, J. Wainright, M. Litt and H. Yu, Electrochim. Acta 1996, 41, 193.
50. O. Savadogo and B. Xing, J. New Mater. Electrochem. Syst. 2000, 3, 343.
51. J. -T. Wang, J. S. Wainright, R. F. Savinell, M. Litt and J. Appl. Electrochem. 1996, 26, 751.
52. J. -T. Wang, W. F. Lin, M. Weber, S. Wasmus and R. F. Savinell, Electrochim. Acta 1998, 43, 3821.
53. M. Weber, J. -T. Wang, S. Wasmus and R. F. Savinell, J. Electrochem. Soc. 1996, 143, L158.
54. Q. Li, R. He, J. Gao, J.O. Jensen and N. J. Bjerrum, J. Electrochem. Soc. 2003, 150, A1599.
55. Q. Li, J. O. Jensen, R. F. Savinell and N. J. Bjerrum. Prog. Polym. Sci. 2009, 34, 449.
56. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu and B. C. Benicewicz, Fuel cells 2005, 5, 287.
57. L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E. W. Choe, D. Rogers, T. Apple and B. C. Benicewicz, Chem. Mater. 2005, 17, 5328.
58. A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli and P. P. Righetti, J. Power Sources 2006, 160, 175.
59. J. K. Kallitsis and N. Gourdoupi, J. New Mater. Electrochem. Syst. 2003, 6, 217.
60. M. K. Daletou, N. Gourdoupi and J. K. Kallitsis, J. Membr. Sci. 2005, 252, 115.
61. J. Peron, E. Ruiz, D. J. Jones and J. Rozi`ere, J. Membr. Sci. 2008, 314, 247.
62. S. Qing, W. Huang and D. Yan, Eur. Polym. J. 2005, 41, 1589.
63. S. W. Chuang and S. L. C. Hsu, J. Polym. Sci., Part A-1, 2006, 44, 4508.
64. J. Klaehn, T. A. Luther, C. J. Orme, M. G. Jones, A. K. Wertsching and E. S. Peterson, Macromolecules 2007, 40, 7487.
65. H. T. Pu, Q. Z. Liu and G. H. Liu, J. Membr. Sci. 2004, 241, 169.
66. H. T. Pu and G. H. Liu, Polym. Int. 2005, 54, 175.
67. J. Wang, J. Liao, L. Yang, S. Zhang, X. Huang and J. Ji, J. Membr. Sci. 2012, 415, 644.
68. C. H. Shen, S. L. C. Hsu, E. Bulycheva and N. Belomoina, J. Membr. Sci. 2012, 11, 399.
69. D. A. Li, E. Christensen, J. O. Jensen and N. J. Bjerrum, Polym. Int. 2011, 60, 1201.
70. S. Wang, C. Zhao, W. Ma, G. Zhang, Z. Liu, J. Ni, M. Li, N. Zhang and H. Na, J. Membr. Sci. 2012, 54, 411.
71. D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla and I. Cantero, Chem. Mater. 2004, 16, 604.
72. H. T. Zheng, L. Pertik and M. Mathe, Int. J. Hydrogen Energy 2010, 35, 3745.
73. S. Li, J. R. Fried, J. Colebrook and J. Burkhardt, Polymer 2010, 51, 5640.
74. S. Yu, L. Xiao and B. C. Benicewicz, Fuel cells 2008, 8, 165.
75. Q. Li, C. J. Pan, O. Jensen, P. Noye and N. J. Bjerrum, Chem. Mater. 2007, 19, 350.
76. C. Hasiotis, Q. Li, V. Deimede, J. K. Kallitsis, C. G. Kontoyannis and N. J. Bjerrum, J. Electrochem. Soc. 2001, 148, A513.
77. H. Pu, L. Liu, Z. Chang and J. Yuan, Electrochim. Acta 2009, 54, 7536.
78. S. W. Chuang and S. L. C. Hsu, J. Power Sources 2007, 168, 172.
79. S. Bhadra, N. H. Kim and J. H. Lee, J. Membr. Sci. 2010, 349, 304.
80. A. Sannigrahi, D. Arunbabu, R. M. Sankar and T. Jana, J. Phys. Chem. B 2007, 111, 12124.
81. Y. Oono, A. Sounai and M. Hori, J. Power Sources 2009, 189, 943.

無法下載圖示 全文公開日期 2019/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE