簡易檢索 / 詳目顯示

研究生: 吳安邦
An-Pang Wu
論文名稱: 銻磷酸鹽及聚苯並咪唑高分子複材作為質子交換膜燃料電池之電解質可行性研究
Electrolyte feasibility study for proton exchange membrane fuel cell using a composite of antimony phosphate and polybenzimidazole
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 陳燿騰
Yaw-Terng Chern
林秀麗
Hsiu-Li Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 高溫質子交換膜燃料電池有機/無機複合膜磷酸銻球磨法聚苯並咪唑
外文關鍵詞: High Temperature Proton exchange membrane fuel c, Organic/Inorganic composite membrane, antimony phosphates, ball-milling method, Polybenzimidazole
相關次數: 點閱:239下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 操作溫度在120℃~200℃的高溫質子交換膜燃料電池(High Temperature Proton exchange membrane fuel cell, HT-PEMFC)其優點包括:不需額外增濕系統、高CO容忍度並且可使用非白金觸媒等等的運用價值。目前以Nafion質子交換膜為主的PEMFC,其製造成本高昂,而造成市場推廣上的一大阻礙。近年來,摻雜磷酸的聚苯並咪唑(Polybenzimidazole,PBI)高分子由於其良好的耐熱性與質子傳導能力,常被研究作為HT-PEMFC之質子交換膜使用,以解決目前PEMFC所遇到的難題。而在本研究中,我們將以磷酸銻與PBI高分子混成複合膜材運用到HT-PEMFC中,並開發在未來可利用之價值。
    金屬磷酸鹽類是以五氯化锑(Antimony Pentachloride)與磷酸(Phosphoric Acid)做為前驅物,在300℃與500℃下煅燒得到磷酸锑粉體,並測量質子傳導率與操作溫度之關係。煅燒300℃下的磷酸锑試片,質子傳導率隨磷銻莫爾比例的增加而提升,於30℃~260℃溫度範圍內,其質子傳導率皆高於1.010-2 S/cm。然而,在煅燒300℃下,摻雜各種陽離子之磷酸銻試片皆無助於提升原本材料的質子傳導率。而煅燒500℃之磷酸銻試片,其質子傳導率介於10-2 ~10-3 S/cm,明顯低於煅燒300℃之磷酸銻試片。因此,我們將煅燒300℃下,未摻雜陽離子之磷酸銻試片運用在HT-PEMFC上。另一方面,根據文獻上報導之方法,於聚磷酸(Poly-phosphoric acid, PPA)溶劑中合成出PBI高分子。而合成出的PBI經由固有黏度測定得知其分子量為4.9×104 g/mol。
    磷酸銻/PBI之複合膜材,在未增濕氣氛下(PH2O~0.016atm),操作溫度為160℃時具有最高質子傳導率為6.1×10-2 S/cm,明顯高於未混成的PBI膜材。而使用磷酸銻/PBI之複合膜材作為電解質膜並在觸媒層中加入白金觸媒與磷酸銻粉末作為質子導體,所構成的膜電極組最大電池功率密度可達121 mW/cm2。


    High Temperature Proton exchange membrane fuel cells (HT-PEMFC), operated between 120C and 200C, promise to work without humidification, more tolerance to carbon monoxide poisoning, more flexibility in catalyst selection. These characteristics open up opportunities to cut down the price of PEMFC based on Nafion. And the HT-PEMFC based on the phosphoric acid doped PBI (Polybenzimidazole) has been developed recently and showed positive signs in achieving the above goals. In this investigation, we incorporate antimony phosphates into the HT-PEMFC based on PBI membrane and study its potential benefits.
    We synthesize antimony phosphates using the precursors of antimony pentachloride and phosphoric acid, and calcine them at 300C and 500C. For the 300C calcined antimony phosphates, the proton conductivity increases with increasing molar ratio of phosphorus over antimony (P/Sb). In the P/Sb ratio between 3.0 and 4.0, the proton conductivities of 300C specimens are higher than 1.010-2 S cm-1 at 30 - 260C without humidification. While, the proton conductivities of 500C specimens are lower, 10-2 ~10-3 S cm-1 at 30 - 260C. A number of dopants have been added in the phosphate, but the proton conductivities are less than their corresponding values of the undoped specimens. Hence we incorporate the undoped antimony phosphate in HT-PEMFC, and these specimens are 300C calcined. On the other hand, the PBI powder has been synthesized in poly- phosphoric acid, according to the method reported in literature. And the molecular weight is estimated 4.9×104 g mol-1 using its viscosity data.
    The composite membrane of PBI and antimony phosphate exhibits high proton conductivity, 6.1×10-2 S cm-1 at 160C. The proton conductivity of this composite membrane is higher than that of the phosphoric acid doped PBI membrane. With this electrolyte membrane and two electrodes loaded with the proton conductor of antimony phosphate and platinum catalyst, we fabricate a membrane-electrode assembly which produces electricity with the peak power value 121 mW cm-2.

    摘要 I ABSTRACT III 總目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 第二章 理論基礎與文獻回顧 5 2.1質子交換膜燃料電池(PEMFC) 5 2.2.1 質子交換膜燃料電池工作原理 5 2.1.2 質子交換膜燃料電池構造介紹 6 2.1.2.1電極 8 2.1.2.2 質子交換膜 9 2.1.3 膜電極組極化損失 10 2.2質子導體傳導機制(Proton conduction mechanisms) 11 2.3質子導體種類與性質介紹 16 2.3.1 含水化合物 (Water-containing compounds) 16 2.3.1.1 水合磺酸高分子 17 2.3.1.2 異質多質子酸之水合物 (Heteropolyacid hydrates) 21 2.3.1.3 層狀結構水合物(Layered hydrates)與非層狀結構水合氧化物(Non-Layered hydrated oxides) 22 2.3.2 氧化物酸與固態氧化物酸鹽 23 2.4高溫質子交換膜 31 2.4.1 聚苯並咪唑 (Polybenzimidazole, PBI) 34 2.4.2 PBI之合成簡介 35 2.4.3 PBI薄膜在質子交換膜燃料電池(PEMFC)上的運用 36 2.4.4 PBI /無機質子導體複合膜 39 2.5研究動機 41 第三章 實驗方法與分析儀器 42 3.1實驗藥品 42 3.2儀器設備 44 3.3實驗方法 45 3.3.1 高溫質子傳導材料—磷酸銻的製備 45 3.3.1.1 磷酸銻的反應方程式 45 3.3.1.2 磷酸銻的製備步驟 45 3.3.1.3 磷酸銻摻雜陽離子金屬的製備步驟 47 3.3.2 聚苯並咪唑(Polybenzimidazole)的製備 49 3.3.2.1 聚苯並咪唑的合成的反應方程式 49 3.3.2.2 聚苯並咪唑(Polybenzimidazole)的合成步驟 49 3.3.3 聚苯並咪唑(Polybenzimidazole)與聚苯並咪唑(Polybenzimidazole) /磷酸銻的膜材製備 50 3.3.3.1 聚苯並咪唑(Polybenzimidazole) 的膜材製備 50 3.3.3.2 聚苯並咪唑(Polybenzimidazole) /磷酸銻的複合膜製備 51 3.3.4 高溫質子交換膜燃料電池之膜電極組(MEA)的製備 53 3.3.4.1 高溫質子交換膜之前處理 53 3.3.4.2 電極製備 53 3.3.4.3 膜電極組壓合與組裝步驟 54 3.4材料性質分析 56 3.4.1 X光繞射晶相分析(XRD) 56 3.4.2 傅立葉轉換紅外光譜儀分析(FTIR) 58 3.4.3 電化學交流阻抗分析(AC Impedance) 59 3.4.3.1 電化學交流阻抗圖譜簡介 59 3.4.3.2 質子導電率量測 61 3.4.4 燃料電池放電特性分析 65 第四章 結果與討論 66 4.1 X光繞射晶相分析(XRD) 66 4.2 磷酸氧銻(CPOSB)之電化學特性分析 68 4.2.1 交流阻抗分析 68 4.2.2 質子傳導率 73 4.3 磷酸銻(CPOSB)摻雜陽離子金屬之電化學特性分析 78 4.3.1 交流阻抗分析 78 4.3.2 質子傳導率 80 4.4 傅立葉轉換紅外光譜儀分析(FTIR) 83 4.5 固有黏度(Inherent viscosity)測定 85 4.6 掃描式電子顯微鏡分析(SEM) 86 4.7 磷酸銻(CPOSB)/PBI複合薄膜之電化學特性分析 88 4.7.1 交流阻抗分析 88 4.7.2 質子傳導率 91 4.8 燃料電池效能分析 93 4.8.1 磷酸銻(CPOSB)/PBI複合薄膜做為高溫PEMFC電解質之單電池效能 93 第五章 結論 102 參考文獻 104 附錄 108

    [1] R.P. Ramasamy, Fuel Cells – Proton-Exchange Membrane Fuel Cells | Membrane–Electrode Assemblies. Elsevier, 2009.
    [2] V.A. Sethuraman, A.Z. Weber, and J.W. Weidner, Fuel Cells – Proton-Exchange Membrane Fuel Cells | Cells. Elsevier, 2009.
    [3] 衣寶廉,燃料電池:原理與運用.五南圖書出版股份有限公司,2007。
    [4] Barbir,F.,PEM fuel cells:theory and practice. Elsevier/Academic Press,2005
    [5] J.b. Goodenough, Solid State Microbatteries, Plexnum Press, New York, pp.195-212, 1990.
    [6] Philippe Colomban, Proton Conductors: Solids, Membranes, and Gels-Materials and Devices. Chemistry of Solid State Materials Cambridge University Press, Great Britain, 1992.
    [7] K.D. Kreuer, Proton Conductivity: Materials and Applications. Chemistry of Materials, 8, pp.610-641, 1996.
    [8] K.D. Kreuer, Solid Proton Conducting Electrolytes: Conduction Mechanism, Phenomenology and New Materials for Fuel Cell Applications. Max-Planck-Institute for Solid State Research,2005
    [9] K.D. Kreuer, On the development of proton conducting materials for technological applications. Solid State Ionics, 97, pp.1-15, 1997.
    [10] 呂曉婷,新穎離子通道修飾觸媒層於質子交換膜燃料電池之研究,國立台灣科技大學,2009.
    [11] J.W. Phair and S.P.S. Badwal, Materials for separation membranes in hydrogen and oxygen production and future power generation. Ionics, 12, pp.103-115, 2006
    [12] 邱志豪,聚苯咪唑合成及薄膜性質,元智大學,2004.
    [13] Gebel G, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solutions. Polymer, 41: 5829, 2000.
    [14] M. H. D. Othman, A. F. Ismail, A. Mustafa, Physico-Chemical Study of Sulfonated Poly(Ether Ether Ketone) Membranes for Direct Methanol Fuel Cell Application. Malaysian Polymer Journal (MPJ), Vol. 2, No. 1, p 10 -28, 2007
    [15] Yu Seung Kim, Feng Wang, Michael Hickner ,Thomas A. Zawodzinski , James E. McGrath, Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications. Journal of Membrane Science, 212, pp.263–282, 2003.
    [16] V. Linkov, New inorganic proton-conductive membranes for hydrogen separation and electro catalysis. Membrane Technology.pp.4-8, 2001.
    [17] N. Miura and N. Yamazoe, Development of new chemical sensors based on low-temperature proton conductors. Solid State Ionics, 53, pp.975-982, 1992.
    [18] Y.M. Li, M. hibino, M. Miyayama, and T. Kudo, Proton conductivity of some hydrated compounds at intermediate temperature up to 150°C under high water vapor pressure. Electrochemistry, 69, pp.2-5, 2001.
    [19] L. Glasser, Proton conduction and injection in solids. Chemical Reviews, 75 (1), pp. 21-65, 1975.
    [20] J. Bruinink, Proton migration in solids. Journal of Applied Electrochemistry 2 (3), pp. 239-249, 1972.
    [21] A.I. Baranov, L.A. Shuvalov and N.M. Shchagina, JETP Lett. Engl. Transl, 36, pp.459-462, 1982
    [22] B.Zhu, Z.H. Lai and B.E. Mellander, Structure and ionic conductivity of lithium sulphatealuminum oxide ceramics. Solid State Ionics, 70-71, pp.285-290, 1994.
    [23] Toshiaki Matsui, Naoto Kazusa, Yukinari Kato, Yasutoshi Iriyama, Takeshi Abe, Kenji Kikuchi, Zempachi Ogumi, Effect of pyrophosphates as supporting matrices on proton conductivity for NH4PO3 composites at intermediate temperatures. Journal of Power Sources, 171, pp. 483-488, 2007.
    [24] C. Sun and U. stimming, Synthesis and characterization of NH4PO3 based composite with superior proton conductivity for intermediate temperature fuel cells. Electrochimica Acta, 53, pp.6417-6422, 2008.
    [25] Hiroki Muroyama, Kenji Kudo, Toshiaki Matsui, Ryuji Kikuchi, Koichi Eguchi, Electrochemical properties of MH2PO4/SiP2O7-based electrolytes (M = alkaline metal) for use in intermediate-temperature fuel cells. Solid State Ionics, 178, pp.1512-1516, 2007.
    [26] T. Uma, H.Y. Tu, S. Warth, D. Schneider, D. Freude and U. stimming, J. Mater Sci.,40, pp.2059-2063, 2005.
    [27] HEO, Pilwon, Intermediate-Temperature Fuel Cells Using a Proton-Conducting Sn0.9In0.1P2O7 Electrolyte. Graduate School of Environmental Studies, Nagoya University, 2006.
    [28] Yongcheng Jin, Yanbai Shen and Takashi Hibino, Proton conduction in metal pyrophosphates (MP2O7) at intermediate temperatures. Journal of Materials Chemistry, 20, pp.6214–6217, 2010.
    [29] Atsuko Tomita, Norikazu Kajiyama, Toshio Kamiya, Masahiro Nagao and Takashi Hibino, Intermediate-Temperature Proton Conduction in Al3+-Doped SnP2O7. Journal of The Electrochemical Society, 154, 12, pp.B1265-B1269, 2007.
    [30] Takaaki Shirai , Shunsuke Satou , Morihiro Saito , Jun Kuwano , Hidenobu Shiroishi, Proton conductivity and microstructures of the core-shell type solid electrolytes in the MO2-In2O3-P2O5 (M=Ti, Sn, Zr) systems. Solid State Ionics, 180, pp.569–574, 2009.
    [31] 謝在軒,高溫型質子交換膜燃料電池有機/無機質子傳導薄膜之合成與鑑定,台灣科技大學,2008。
    [32] Vogel H. and Marvel C. S., Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50 (154), pp. 511-539, 1961.
    [33] Imai Y., Uno. K. and Iwakura Y., Polybenzazoles, Makromol. Chem., 83 (1), 179-187, 1965.
    [34] Wolfe, J. F., Sybert, P. D., Sybert and J. R., Liquid crystalline polymer compositions, process, and products., 1985.
    [35] Wainright, J. S., Wang, J. T., Weng, D. Savinell, R. F. and Litt, M., Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte. Journal of the Electrochemical Society, 142 (7), L121-L123, 1995.
    [36] Brinker, K. C., Robinson and I. M., Polybenzimidazoles. 1959.
    [37] Vogel, H. Marvel and C. S., Polybenzimidazoles. II. Journal of Polymer Science Part A: General Papers, 1 (5), 1531-1541, 1963.
    [38] Iwakura, Y.; Uno, K.; Imai, Y., Polyphenylenebenzimidazoles. Journal of Polymer Science Part A: General Papers, 2 (6), 2605-2615, 1964.
    [39] Iwakura,Y.,Uno,K.;Imai, Y., Polybenzimidazoles. II.Polyalkylenebenzimidazoles. Makromol. Chem., 77 (1), 33-40, 1964.
    [40] Hedberg, F. L.; Marvel, C. S., A new single-step process for polybenzimidazole synthesis. Journal of Polymer Science: Polymer Chemistry Edition, 12 (8), 1823-1828, 1974.
    [41] Dudgeon, C. D.; Vogl, O., Bisorthoesters as polymer intermediates.II. A facile method for the preparation of polybenzimidazoles. Journal of Polymer Science: Polymer Chemistry Edition, 16 (8), 1831-1852,1978.
    [42] Ueda, M.; Sato, M.; Mochizuki, A., Poly(benzimidazole) synthesisby direct reaction of diacids and diamines, Macromolecules,18 (12), 2723-2726,2002.
    [43] Xing, B.; Savadogo, O., Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI) . Electrochemistry Communications, (10), 697-702, 2000.
    [44] Savadogo, O.; Xing, B., Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on acid-doped polybenzimidazole (PBI). J. New Mater. Electrochem. Syst., 3, 345-349, 2000.
    [45] Li, Q.; He, R.; Berg, R. W.; Hjuler, H. A.; Bjerrum, N. J., Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics, 168(1-2),177-185, 2004.
    [46] Ronghuan He, Qingfeng Li, Gang Xiao, Niels J. Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 226, 169–184, 2003.
    [47] Wang, J. T.; Wasmus, S.; Savinell, R. F., Real-Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell. Journal of the Electrochemical Society, 143 (4), 1233-1239, 1996.
    [48] Wasmus, S.; Küver, A., Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry, 461 (1-2), 14-31, 1999.
    [49] P. Staiti, M. Minutoli, S. Hocevar, Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application. Journal of Power Sources, 90, 231–235, 2000.
    [50] Pietro Staiti, Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole. Materials Letters, Volume 47, Issues 4–5, 241–246, 2001.
    [51] S.M. Javaid Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochimica Acta, 50, 4771–4777, 2005.
    [52] Hongtao Wang , Jia Xiao , Zhufa Zhou , Feng Zhang , Hongmin Zhang , Guilin Ma, Ionic conduction in undoped SnP2O7 at intermediate temperatures. Solid State Ionics, 181 ,1521–1524, 2010.
    [53] X.Wu, A. Verma, K. Scott, A Sb-doped SnP2O7 Solid Proton Conductor for Intermediate Temperature Fuel Cells. FUEL CELLS 00, 0000, No. 0, 453–458, 2008.
    [54] JUAN ANTONIO ASENSIO, SALVADOR BORRO′ S, PEDRO GO′ MEZ-ROMERO, Proton-Conducting Polymers Based on Benzimidazoles and Sulfonated Benzimidazoles. Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 40, 3703–3710, 2002.
    [55] Kim, M.-J., Ahn, T.-K., Park, J.H., Choe, S, Molecular weight and polyelectrolyte effect of poly(amic acid) in dilute solution. Polymer (Korea), Volume 20, Issue 5, Pages 885-892, 1996.
    [56] Y.-L. Ma, J. S. Wainright,, M. H. Litt, and R. F. Savinell, Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 151 (1), A8-A16 , 2004.

    QR CODE