簡易檢索 / 詳目顯示

研究生: 沈嘉進
Chia-Chin Shen
論文名稱: 改質聚乙烯醇作為直接甲醇燃料電池電解質薄膜之研究
Study on modified PVA electrolyte membranes for DMFC
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 陳崇賢
Chorng-Shyan Chern
林智汶
Chi-Wen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 135
中文關鍵詞: 直接甲醇燃料電池電解質聚乙烯醇有機/無機複合膜
外文關鍵詞: DMFC, organic-inorganic hybrid membrane, Electrolyte, PVA
相關次數: 點閱:292下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在發展低溫操作用的直接甲醇燃料電池(Direct methanol fuel cell, DMFC)電解質,以取代價格昂貴又無法有效阻擋甲醇穿透的Nafion膜材。本研究採用成膜性高、具良好化學穩定性且低價格的聚乙烯醇( Polyvinyl alcohol, PVA)為膜材主體,而分成兩個系統來探討。一是改質PVA有機膜,利用氯磺酸作磺酸化反應,接著以戊二醛行交鏈反應,另一為先將PVA磺酸化後,再添加無機的四乙基矽烷(Tetraethoxysilane, TEOS)及磷酸三甲酯(Trimethyl phosphate, TMP),使其分散於PVA結構中,並在酸性觸媒的催化下,進行溶膠-凝膠(sol-gel)反應,以合成SPVA/SiO2/P2O5有機/無機複合膜。並對開發的膜材作一系列性質分析及研究,包括結構、含水率、熱性質分析、導電率、甲醇滲透度等。結果顯示,改質的CSPVA-30-1h薄膜,在30oC且含水的狀態下,氫離子導電度可達2.89x10-3 S/cm,而就甲醇滲透度的結果,以CSPVA-45-3h表現最佳,於30oC下為3.26x10-7 cm2/s,約為Nafion甲醇滲透度的十分之一,顯示改質後的膜材,確實有阻擋甲醇滲透的能力。在有機/無機複合膜(SPVA/SiO2/P2O5)中, 其氫離子導電度以SPSP-612-1h表現最佳,可達5.3x10-3 S/cm,且在75oC、80% HR條件下,可達1.0x10-2 S/cm。
    本研究亦嘗試建立膜特性與膜之氫離子導電度及甲醇滲透率之關係。


    The aim of this study was to develop new proton exchange membranes for low temperature DMFC for the substitution of the Nafion membrane showing high cost and poor barrier to methanol crossover. Because of its good chemical stability, film-fabrication ability and low cost, PVA was chosen to be the matrix of developed membranes. There were two systems developed in this study. One is a modified PVA membrane cross-linked and sulfonized with glutaraldehyde and chlorosulfonic acid, respectively. The other is an organic-inorganic hybrid PVA membrane in which PVA sulfonated with chlorosulfonic acid is organic matrix and then inorganic matrix was formed from the reaction between Tetraethoxysilane (TEOS) and Trimethyl phosphate (TMP). Various analysis techniques were used to characterize the structure and study the physical and thermal properties, proton conductivity as well as methanol permeability of the developed membranes. The CSPVA-30-1h membrane showed the best proton conductivity of 2.89x10-3 S/cm among the modified PVA membranes at 30 oC in flooded state. The methanol permeability of the CSPVA-45-3h membrane was measured to be 3.26x10-7 cm2/s about one order less than that of the Nafion membrane. It was found that a significant reduction in methanol crossover could be achieved using the modified PVA membrane. Among the organic-inorganic hybrid membranes, SPVA/SiO2/P2O5, the best proton conductivity was obtained to be 5.3x10-3 S/cm for the SPSP-612-1h membrane at 30 oC in flooded state. In addition, higher proton conductivity of ~1.0x10-2 S/cm could be achieved at 75 oC and 80% R.H.
    The relationship between the characteristics and the proton conductivity as well as the methanol permeability for the developed membranes is also discussed in this study.

    中文摘要…................................................................................................I 英文摘要...............................................................................................II 誌謝.......................................................................................................III 目錄…………………………………………………………………….IV 圖目錄……………………………………………………………....VIII 表目錄…………………………………………………………………..XI 符號表………………………………………………………………...XIII 第一章 序論……………………………………………………………..1 1.1前言…………………………………………………………………1 1.2 燃料電池種類……………………………………………………….2 1.3 直接甲醇燃料電池(DMFC)………………………………………...5 1.4 直接甲醇燃料電池之電化學原理…………………………………6 1.5 直接甲醇燃料電池之發展現況……………………………………7 1.6 研究動機…………………………………………………………11 第二章 文獻回顧………………………………………………………13 2.1 質子交換膜相關研究及發展現況………………………………13 2.2 質子交換膜內氫離子的移動……………………………………...16 2.3 溶膠-凝膠法(sol-gel reaction)……………………………………..17 2.4 有機-無機複合膜於燃料電池上的應用…………………………19 第三章 實驗…………………………………………………………22 3.1實驗藥品……………………………………………………………22 3.2儀器設備與器材……………………………………………………23 3.3實驗步驟……………………………………………………………24 3.3.1 PVA有機薄膜之合成……………………………………………24 3.3.2 SPVA/SiO2/P2O5 有機/無機複合膜之合成……………………26 3.3.3 薄膜澎潤度量測…………………………………………………28 3.3.4 甲醇滲透度量測…………………………………………………28 3.3.5 IEC量測……………………………………………………..……30 3.3.6 化學穩定度測試………………………………………………31 3.4 實驗原理…………………………………………………………...31 3.4.1 FTIR傅立葉轉換紅外光譜儀…………………………………31 3.4.2 TGA熱重分析法…………………………………………………32 3.4.3 DSC示差掃瞄熱分析法…………………………………………33 3.4.4 AC-Impedance交流阻抗電化學特性測試………………………34 3.4.5 SAXS小角度X光散射儀………………………………………43 第四章 實驗結果……………………………………………………46 4.1 PVA有機薄膜………………………………………………………46 4.1.1 PVA有機薄膜FTIR/ATR分析…………………………………46 4.1.2 PVA有機膜熱重分析……………………………………………53 4.1.3 PVA有機膜DSC分析………………………………………..….57 4.1.4 PVA有機薄膜含水率分析……………………………………….60 4.1.5 PVA有機薄膜甲醇滲透度量測………………………………….64 4.1.6 PVA有機薄膜導電度量測……………………………………….66 4.1.7 PVA有機薄膜化學穩定性量測………………………………….69 4.1.8 PVA有機薄膜小角度X光散射分析……………………………70 4.1.9 PVA有機薄膜離子交換容量分析……………………………….72 4.2 SPVA/SiO2/P2O5 複合膜…………………………………………...73 4.2.1 SPVA/SiO2/P2O5複合膜FTIR/ATR分析………………………...73 4.2.2 SPVA/SiO2/P2O5複合膜熱重分析………………………………..76 4.2.3 SPVA/SiO2/P2O5複合膜DSC分析………………………………79 4.2.4 SPVA/SiO2/P2O5複合膜含水率分析……………………………..80 4.2.5 SPVA/SiO2/P2O5複合膜甲醇滲透分析…………………………..84 4.2.6 SPVA/SiO2/P2O5複合膜導電度分析……………………………..85 4.2.7 SPVA/SiO2/P2O5複合膜化學穩定性量測………………………..87 4.2.8 SPVA/SiO2/P2O5複合膜小角度X光散射分析…………………88 4.2.9 SPVA/SiO2/P2O5複合膜離子交換容量分析…………………….89 第五章 討論…………………………………………………………..91 5.1 PVA有機薄膜…………………………….………………………..91 5.1.1影響合成步驟的因素…………………………………………….91 5.1.2 影響導電度的因素………………………………………………93 5.1.3 影響甲醇滲透的因素…………………………………………97 5.2 SPVA/SiO2/P2O5複合膜……………………………………………99 5.2.1 影響合成步驟的因素……………………………………………99 5.2.2 影響導電度的因素……………………………………………102 5.2.3 影響甲醇滲透的因素…………………………………………103 第六章 結論………………………………………………………104 6.1 PVA有機膜………………………………………………………104 6.2 SPVA/SiO2/P2O5複合膜…………………………………………105 第七章 參考文獻……………………………………………………..106 附錄……………………………………………………………………113

    【1】W. R. Grove, Philos. Mag. Ser. 3, 14, 127 (1839)
    【2】鄭耀宗,徐耀昇,燃料電池技術進展的現況,燃料電池論文集,15-27 (1989)
    【3】K. Ledjeff-Hey and A. Heinzel, Critical issues and future prospects for solid polymer fuel cell, Journal of Power Sources, 61, 125 (1996).
    【4】Lalande G., M. C. Denis, P. Gouerec, D. Guay, J. P. Dodelet, and R. Schulz, J. New Mater. Electrochem. Syst.
    【5】D. Rastler, Opportunities and challenges for fuel cells in the evolving energe enterprise, Fuel Cells Bulletin, 19, 7 (1999).
    【6】J. M. Ogden, M. M. Steinbugler, and T. G. Kreutz, A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implication for vehicle design and infrastructure development, Journal of Power Sources, 79, 143 (1999).
    【7】J. M. Ogden, T. G. Kreutz and M. M. Steinbugler, Fuels for fuel cell vehicles, Fuel Cells Bulletin , 16, 5 (1999).
    【8】A. Heinzel, R. Nolte, K. Ledjeff-Hey, M. Zedda, Membrane fuel cells-concepts and system design, Electrochim. Acta, 43, 3817 (1998).
    【9】S. Surampudi, S. R. Narayanan, and E. Vamos, Advances in direct methanol fuel-cells, Journal of Power Sources, 47, 377 (1994)
    【10】M. P. Hogarth, and G. A. Hards, Platinum Metal Rev., 40, 150 (1996)
    【11】A. K. Shukla, M. K. Ravikumar, and K. S. Gandhi, Direct methanol fuel cells for vehicnlar applications, J. Solid State Electrochem. 2, 117 (1998)
    【12】J. Shim, D. Y. Yoo, and J. S. Lee,Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell, Electrochim. Acta, 45, 1943 (2000)
    【13】陳俊明,直接甲醇燃料電池陽極奈米合金觸媒之製備與鑑定
    ,台灣科技大學化工系。
    【14】T. Schultz, S. Zhou, and K. Sundmacher, Review: Current status of and recent developments in the direct methanol fuel cell, Chem. Eng. Technol. 24, 12 (2001)
    【15】J.W. Rhim, C.K. Yeom, S.W. Kim, Modification of poly(vinyl alcohol ) membranes using sulfosuccinic acid and its application to prevaporation separation of water-alcohol mixture, J. Appl. Polym. Sci. 68, 1717-1723 (1998)
    【16】W. Y. Chiang, C. L. Chen, Separation of water–alcohol mixture by using polymer membranes. 6. Water-alcohol pervaporation through terpolymer of PVA gragted with hydrazine reacted SMA, Polymer, 39, 2227-2233 (1998)
    【17】J. W. Rhim, Y. K. Kim, Pervaporation separation of MTBE- methanol mixture using cross-linked PVA membranes, J. Appl. Polym. Sci. 75, 1699-1707 (2000)
    【18】J. W. Rhim , M.Y. Sohn, H.J. Joo, K. H. Lee, Pervaporation separation of binary organic-aqueous liquid mixtures using crosslinked PVA membranes. I. Characterization of the reaction between PVA and PAA, J. Appl. Polym. Sci. 50, 679-684 (1993)
    【19】許義政,磺酸化聚二醚奈米複合質子交換膜之研究,長庚大學化工與材料工程系
    【20】S. P. S. Yen, S.R. Naranan, G. Halpert, E. Graham, A Yavrouian, Polymer material for electrolytic membranes fuel cell, U.S. Patent 5, 795, 496 (1998)
    【21】X. Ren, M. S. Wilson, S Gottesfeld, High performance direct methanol polymer electrolyte fuel cells, J. Electrochem. Soc. 143, 12 (1996)
    【22】P. L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion- silica electrolyte for high temperature operation, Solid State Ionics, 125, 431-437 (1999)
    【23】R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng,
    K. Lux, M. Litt, C. Rogers, J. Electrochem. Soc. 141, 46 (1994)
    【24】M. Doyle, S.K. Choi, G. Proulx, High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites, J. Electrochem. Soc. 147, 34 (2000)
    【25】E. D. Powers, G.A. Serad, In high performance polymers: Their origin and development, Elsevier, New York, 355 (1989)
    【26】J. S. Wainright, R. F. Savinell, M. H. Litt, In procesdings of the second international symposium on new materials of fuel cell and modern battery systems, Montreal, Canada, July6-10, 808 (1997)
    【27】X. Weilin, L. Changpeng, X. Xinzhong, S. Yi, L. Yanzhuo, X. Wei
    , L. Tianhong, New proton exchange membranes based on poly(vinyl alcohol) for DMFCs, Solid State Ionics, 171, 121-127 (2004)
    【28】J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, Y. M. Lee, Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes, J. Membr. Sci. 238, 143-151 (2004)
    【29】M. Hogarth, X. Glipa, High temperature membranes for sold polymer fuel cells, Johnson Matthey Technology Centre.
    【30】K. D. Kreuer, On the complexity of proton conduction phenomena, Solid state ionics, 136-137, 149-160 (2000)
    【31】黃立寧,PTFE/Nafion-TEOS複合膜的製備及性能研究,元智大學化學工程系。
    【32】J. Wen, E. M. James, Sol-Gel Preparation of Composites of
    Poly(dimethylsiloxane) with SiO2/TiO2, and Their Mechanical
    Properties, Polymer Jounral, 27(5), 492 (1995)
    【33】D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, Performance evaluation of a Nafion/silicon oxide hybrid memberance for direct methanol fuel cell, Journal of Power Sources, 106, 173 (2002)
    【34】F. Damay, L.C. Klein, Transport properties of Nafion composite
    membranes for proton-exchange membranes fuel cells, Solid State
    Ionics, 261, 162– 163 (2003)
    【35】K. Furukawa, F. Kaga, K. Okajima, and M. Sudoh, Generation
    Performance of Gas-Feed Direct Methanol Fuel Cell, International
    Journal of Green Energy, 1(1), 123-135 (2004)
    【36】Z. G. Shao, X. Wang, I. M. Hsing, Composite Nafion/polyvinyl
    alcohol membranes for the direct methanol fuel cell, J. Membr. Sci., 210, 147-153 (2002)
    【37】U. Tadashi, O. Kenji, M. Hiroshi, M. Takashi, Structure and
    permeation characterisics of an aqueous ethanol solution of
    organic-inorgaic hybrid membranes composed of poly(vinyl alcohol) and tetraethoxysiliane, Macromolecules, 35, 9156 (2002)
    【38】S.P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau,
    Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, J. Membr. Sci., 203, 215 (2002)
    【39】K.T. Adjemiana, S. Srinivasana, J. Benzigerb, A.B. Bocarslya,
    Investigation of PEMFC operation above 100℃ employing
    perfluorosulfonic acid silicon oxide composite membranes, Journal of Power Sources, 109, 356-364 (2002)
    【40】黃鼎翰,以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究,台灣科技大學材料科技研究所。
    【41】C. K. Yeom, K. H. Lee, Prevaporation separation of water-acetic acid mixtures through poly(vinly alcohol) membranes crosslinked with glutaraldehyde, J. Membr. sci. 109, 257-265 (1996)
    【42】Y. Tsuchiya, K. Sumi, Thermal decomposition products of poly(vinyl) alcohol, J. Polym. Sci. 7, 3151-3158 (1969)
    【43】F. Zhan, M. Liu, M. Guo, L. Wu, Preparation of superabsorbent polymer with slow-release phosphate fertilizer, J. Appl. Polym. Sci. 92, 3417-3421 (2004)
    【44】S.P. Tung, B.J. Hwang, High proton conductive glass electrolyte synthesized by an accelerated sol-gel process with water/vapor management, J. Membr. Sci. 241, 315-323 (2004)
    【45】謝炯勳,以不同方法製備之PVA-SiO2有機-無機混成複材之性質研究,國立台灣科技大學纖維及高分子工程技術研究所。
    【46】Z. G. Shao and I. M. Hsing, Nafion Membrane Coated with Sulfonated Poly(vinyl alcohol)-Nafion Film for Direct Methanol Fuel Cells, Electrochemical and Solid-State Letters, 5 (9) A185-A187 (2002)
    【47】S. P. Tung, B. J. Hwang, Synthesis and characterization of xP2O5-(100-x)SiO2 glass electrolytes prepared by accelerated sol-gel process with water/vapor management, in press.

    QR CODE