簡易檢索 / 詳目顯示

研究生: 陳莉穎
Li-Ying Chen
論文名稱: 萬用啟發式演算法優化機器學習於預拌混凝土之抗壓強度預測
Prediction of Concrete Compressive Strength using Metaheuristic Optimized Machine Learning System
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 阮聖彰
Shanq-Jang Ruan
陳君弢
Chun-Tao Chen
廖敏志
Min-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 207
中文關鍵詞: 預拌混凝土抗壓強度啟發式優化演算法機器學習預測系統
外文關鍵詞: ready-mixed concrete, compressive strength, heuristic optimization algorithm, machine learning, prediction system
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

混凝土為目前世界上用量最多、用途最廣的建築材料之一,其力學性質中抗壓強度至關重要。當前規範以28天標準養護後的混凝土抗壓實驗為標準的測試方法,需等混凝土硬化並形成強度後進行抗壓強度試驗,方能檢視材料配比設計或養護環境場域的適宜性。理想的情況為實際強度恰等於目標強度,故若能提早預估需經後驗方能得知的抗壓強度,並提升預測模型準確性,將有助於混凝土強度品質管理,達安全且經濟之優勢。混凝土配比設計中,水膠比為決定混凝土強度的最主要因素,然不同的預拌廠雖採相同配比,卻常產出不同強度的預拌混凝土,由此可知混凝土強度仍受其它因素,諸如水泥、粗細粒料含量、飛灰爐石比例、坍度等因素之影響。由於基本的統計方法未能有效反應預拌廠混凝土強度及相關組成材料間可能存在的非線性函數關係,本研究將探討實務累積的抽驗資料態樣,運用人工智慧技術及啟發式優化演算法,建構最佳化機器學習模型,茲以預測預拌廠生產的混凝土抗壓強度,供相關單位進行先期品質管制。經回顧文獻常用之演算法,單一模型如人工神經網絡、支援向量機、決策樹、線性回歸;複合模型為表決法、重複採樣平均表決法、演化堆疊法,以及時下具良好評價的極限梯度提升法(XGBoost)。基於上述人工智慧模型進行效能評估,確立最合適之機器學習模型為XGBoost,接續結合自行開發的鑑識科學流程萬用啟發式演算法(Forensic-Based Investigation algorithm, FBI),調教具最佳效能的極限梯度提升法模型,優化最終預測模型的泛化能力。最後,以該預測模式為核心,開發預拌混凝土強度預測系統介面,便利現地品質工程師操作及紀錄。


Concrete is currently one of the most widely adopted building materials in the world. The compressive strength of concrete is important for its mechanical properties. The current specification applies the 28-day curing standard concrete compression test as the official test method. To check either the designing of material ratio or suitability of the curing environment, the sample of concrete must be cured and hardened before performing the compressive strength test. Enhancing the precision of the prediction model improve the quality control process and achieve the safety and economic benefits. The most important factor I the concrete mix ratio is the water-binder, which determines the strength of the concrete. Nevertheless, other factors, could be cement, coarse, fine aggregate, fly ash, furnace stone or slump, may result in the same design leading to different outcomes from ready-mix concrete plants. However, the basic statistical methods fail to show the non-linear functional relationship between the concrete strength of the ready-mix plant and the compounds of concrete. This study examines the patterns of accumulated sampling data using artificial intelligence techniques and heuristic optimization algorithms to construct an optimized machine learning model for predicting the compressive strength of concrete produced by a ready-mix plant for pre-controlling of quality. Many common algorithms are found in previous literature. Methods based on single models include artificial neural networks, support vector machines, regression trees and linear regression. Ensemble models include voting, bagging, stacking and Extreme Gradient Boosting. This investigation selects the best model by evaluating the performance of the above models, and combining the Forensic-Based Investigation algorithm (FBI) developed by our lab to enhance the hyper-parameter of the Extreme Gradient Boosting and to optimize the generalization ability of predictive models. Finally, an interface is developed for the concrete strength prediction system to enable quality control engineers to operate and record data using the proposed predicting model.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究流程與研究架構 3 第二章 文獻回顧 5 2.1 預拌混凝土材料因子介紹及工程應用 5 2.2 人工智慧應用於混凝土預拌強度之預測 7 2.3人工智慧嵌入式專家系統 9 第三章 研究方法 11 3.1 敘述性統計分析 11 3.1.1 因子資料歷史分佈 11 3.1.2 敘述性統計分析 12 3.1.3 相關性分析 13 3.1.4 敏感度分析 14 3.2 機器學習及啟發式優化智能模型 15 3.2.1 單一模型 15 3.2.1.1 人工神經網路 15 3.2.1.2 線性迴歸 17 3.2.1.3 支援向量迴歸 17 3.2.1.4 決策迴歸樹 19 3.2.2 組合模型 20 3.2.2.1 重複採樣平均表決法 20 3.2.2.2 表決法 21 3.2.2.3 堆疊法 22 3.2.2.4 極限梯度提升法 22 3.2.3 啟發式優化智能模型 24 3.3 模型驗證及誤差評估準則 26 3.3.1交叉驗證法 26 3.3.2留出法 28 3.3.3誤差評估準則 28 3.4 人工智慧模型開發軟體之比較 30 3.5系統開發與工具 31 第四章 資料蒐集與模型建立 33 4.1針對國內合格預拌混凝土廠抽驗流程 33 4.2 資料預處理及其動機 34 4.2.1特徵因子的選取 37 4.2.2資料集的規模 39 4.2.3資料可信度檢核 39 4.2.4機器學習與傳統預測法的優劣性 40 4.2.5現地抽樣資料的深度分析 40 4.2.6資訊洩漏的模型泛化能力 41 4.2.7抽驗前之抗壓強度 41 4.3 人工智慧模型建構流程 41 4.3.1單一模型與複合模型的比較 41 4.3.2機器學習結合優化演算法建立啟發式優化智能模型 54 4.4分析結果與討論 56 第五章 預拌混凝土抗壓強度預測系統開發與設計 59 5.1介面設計與建置過程 59 5.2操作步驟說明 60 5.3系統測試 64 第六章 結論與建議 68 6.1研究結論 68 6.2研究建議與未來方向 70 參考文獻 72 附錄一、預拌混凝土資料相關統計表 81 附錄二、Python人工智慧模型程式碼 84 附錄三、啟發式優化智能模型FBI-XGBoost模型程式碼 88 附錄四、預拌混凝土抗壓強度預測開發介面程式碼 97 附錄五、預拌混凝土抗壓強度預測介面製做教學 143 附錄六、預拌混凝土抗壓強度預測介面教學手冊 176

[1] C. K. Y. Leung, "Concrete as a Building Material," in Encyclopedia of Materials: Science and Technology, K. H. J. Buschow et al. Eds. Oxford: Elsevier, 2001, pp. 1471-1479.
[2] S. Li, O. M. Jensen, and Q. Yu, "Mechanism of rate dependent behaviour of ultra-high performance fibre reinforced concrete containing coarse aggregates under flexural loading," Construction and Building Materials, vol. 301, p. 124055, 2021/09/27/ 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124055.
[3] H. Shafizadeh-Moghadam, "Fully component selection: An efficient combination of feature selection and principal component analysis to increase model performance," Expert Systems with Applications, vol. 186, p. 115678, 2021/12/30/ 2021, doi: https://doi.org/10.1016/j.eswa.2021.115678.
[4] 經濟部工業局, "預拌混凝土價格與產銷說明," 2020, doi: https://amis.mine.gov.tw/dispPageBox/getFile/Get.aspx?FileLocation=PJ-MINE%5CFiles%5C&FileName=446.pdf.
[5] J. Zhang et al., "Chloride diffusion in alkali-activated fly ash/slag concretes: Role of slag content, water/binder ratio, alkali content and sand-aggregate ratio," Construction and Building Materials, vol. 261, p. 119940, 2020/11/20/ 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.119940.
[6] 王. 經濟部水利署, "淺談預拌混凝土施工品質管理," 建築安全技術資訊, doi: http://www.arch.net.tw/modern/month/465/465-1.HTM.
[7] 財團法人台灣營建研究院, "優 質 混 凝 土 (GRMC)驗 證
申請作業手冊," no. 中華民國預拌混凝土廠驗證 2000, doi: http://www.tcri.org.tw/grmc/_notes/TP75002-11R01C8.pdf.
[8] 內政部營建署, "混凝土結構設計規範," 2021, doi: https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E6%81%AF/%E6%B3%95%E8%A6%8F%E5%85%AC%E5%91%8A/30-%E5%BB%BA%E7%AF%89%E7%AE%A1%E7%90%86%E7%AF%87/10431-%E6%B7%B7%E5%87%9D%E5%9C%9F%E7%B5%90%E6%A7%8B%E8%A8%AD%E8%A8%88%E8%A6%8F%E7%AF%84.html.
[9] T. Xie, A. Gholampour, and T. Ozbakkaloglu, "Toward the Development of Sustainable Concretes with Recycled Concrete Aggregates: Comprehensive Review of Studies on Mechanical Properties," Journal of Materials in Civil Engineering, vol. 30, no. 9, p. 04018211, 2018/09/01 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002304.
[10] J. Yang, R. Haghani, T. Blanksvärd, and K. Lundgren, "Experimental study of FRP-strengthened concrete beams with corroded reinforcement," Construction and Building Materials, vol. 301, p. 124076, 2021/09/27/ 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124076.
[11] J. Mazars, Y. Berthaud, and S. Ramtani, "The unilateral behaviour of damaged concrete," Engineering Fracture Mechanics, vol. 35, no. 4, pp. 629-635, 1990/01/01/ 1990, doi: https://doi.org/10.1016/0013-7944(90)90145-7.
[12] A. Committee and I. O. f. Standardization, "Building code requirements for structural concrete (ACI 318-08) and commentary," 2008: American Concrete Institute.
[13] S. Popovics, "Analysis of concrete strength versus water-cement ratio relationship," Materials Journal, vol. 87, no. 5, pp. 517-529, 1990.
[14] D. A. Abrams, "Water-cement ratio as a basis of concrete quality," in Journal Proceedings, 1927, vol. 23, no. 2, pp. 452-457.
[15] R. Kozul and D. Darwin, "Effects of aggregate type, size, and content on concrete strength and fracture energy," University of Kansas Center for Research, Inc., 1997.
[16] J. Kim, "Properties of recycled aggregate concrete designed with equivalent mortar volume mix design," Construction and Building Materials, vol. 301, p. 124091, 2021/09/27/ 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124091.
[17] A. Fernández-Jiménez and A. Palomo, "Characterisation of fly ashes. Potential reactivity as alkaline cements," Fuel, vol. 82, no. 18, pp. 2259-2265, 2003.
[18] H. Adeli, "Four decades of computing in civil engineering," in CIGOS 2019, Innovation for sustainable infrastructure: Springer, 2020, pp. 3-11.
[19] T. N. Nguyen, S. Lee, H. Nguyen-Xuan, and J. Lee, "A novel analysis-prediction approach for geometrically nonlinear problems using group method of data handling," Computer Methods in Applied Mechanics and Engineering, vol. 354, pp. 506-526, 2019.
[20] K. Güçlüer, A. Özbeyaz, S. Göymen, and O. Günaydın, "A comparative investigation using machine learning methods for concrete compressive strength estimation," Materials Today Communications, vol. 27, p. 102278, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.mtcomm.2021.102278.
[21] J.-S. Chou and A.-D. Pham, "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength," Construction and Building Materials, vol. 49, pp. 554-563, 2013/12/01/ 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.08.078.
[22] B. A. Salami, T. Olayiwola, T. A. Oyehan, and I. A. Raji, "Data-driven model for ternary-blend concrete compressive strength prediction using machine learning approach," Construction and Building Materials, vol. 301, p. 124152, 2021/09/27/ 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124152.
[23] H. Eskandari-Naddaf and R. Kazemi, "ANN prediction of cement mortar compressive strength, influence of cement strength class," Construction and Building Materials, vol. 138, pp. 1-11, 2017/05/01/ 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.01.132.
[24] S. Chithra, S. R. R. S. Kumar, K. Chinnaraju, and F. Alfin Ashmita, "A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks," Construction and Building Materials, vol. 114, pp. 528-535, 2016/07/01/ 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.03.214.
[25] H. Naderpour, A. H. Rafiean, and P. Fakharian, "Compressive strength prediction of environmentally friendly concrete using artificial neural networks," Journal of Building Engineering, vol. 16, pp. 213-219, 2018/03/01/ 2018, doi: https://doi.org/10.1016/j.jobe.2018.01.007.
[26] F. Khademi, M. Akbari, S. M. Jamal, and M. Nikoo, "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete," Frontiers of Structural and Civil Engineering, vol. 11, no. 1, pp. 90-99, 2017/03/01 2017, doi: 10.1007/s11709-016-0363-9.
[27] P. G. Asteris, A. D. Skentou, A. Bardhan, P. Samui, and K. Pilakoutas, "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models," Cement and Concrete Research, vol. 145, p. 106449, 2021/07/01/ 2021, doi: https://doi.org/10.1016/j.cemconres.2021.106449.
[28] M. Azimi-Pour, H. Eskandari-Naddaf, and A. Pakzad, "Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete," Construction and Building Materials, vol. 230, p. 117021, 2020/01/10/ 2020, doi: https://doi.org/10.1016/j.conbuildmat.2019.117021.
[29] S. Ray, M. M. Rahman, M. Haque, M. W. Hasan, and M. M. Alam, "Performance evaluation of SVM and GBM in predicting compressive and splitting tensile strength of concrete prepared with ceramic waste and nylon fiber," Journal of King Saud University - Engineering Sciences, 2021/02/25/ 2021, doi: https://doi.org/10.1016/j.jksues.2021.02.009.
[30] M. Jalal, P. Arabali, Z. Grasley, J. W. Bullard, and H. Jalal, "Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete," Journal of Cleaner Production, vol. 273, p. 122960, 2020/11/10/ 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122960.
[31] W. Ben Chaabene, M. Flah, and M. L. Nehdi, "Machine learning prediction of mechanical properties of concrete: Critical review," Construction and Building Materials, vol. 260, p. 119889, 2020/11/10/ 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.119889.
[32] M. R. Kaloop, D. Kumar, P. Samui, J. W. Hu, and D. Kim, "Compressive strength prediction of high-performance concrete using gradient tree boosting machine," Construction and Building Materials, vol. 264, p. 120198, 2020/12/20/ 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.120198.
[33] I. Gkioulekas and L. G. Papageorgiou, "Tree regression models using statistical testing and mixed integer programming," Computers & Industrial Engineering, vol. 153, p. 107059, 2021/03/01/ 2021, doi: https://doi.org/10.1016/j.cie.2020.107059.
[34] A. Deifalla, "Refining the torsion design of fibered concrete beams reinforced with FRP using multi-variable non-linear regression analysis for experimental results," Engineering Structures, vol. 226, p. 111394, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.engstruct.2020.111394.
[35] N.-D. Hoang, "Estimating punching shear capacity of steel fibre reinforced concrete slabs using sequential piecewise multiple linear regression and artificial neural network," Measurement, vol. 137, pp. 58-70, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.measurement.2019.01.035.
[36] N. Deshpande, S. Londhe, and S. Kulkarni, "Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression," International Journal of Sustainable Built Environment, vol. 3, no. 2, pp. 187-198, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.ijsbe.2014.12.002.
[37] J.-S. Chou, C.-F. Tsai, A.-D. Pham, and Y.-H. Lu, "Machine learning in concrete strength simulations: Multi-nation data analytics," Construction and Building Materials, vol. 73, pp. 771-780, 2014/12/30/ 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.09.054.
[38] R. Cai et al., "Prediction of surface chloride concentration of marine concrete using ensemble machine learning," Cement and Concrete Research, vol. 136, p. 106164, 2020/10/01/ 2020, doi: https://doi.org/10.1016/j.cemconres.2020.106164.
[39] M. Schlögl, "A multivariate analysis of environmental effects on road accident occurrence using a balanced bagging approach," Accident Analysis & Prevention, vol. 136, p. 105398, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.aap.2019.105398.
[40] S. Agarwal and C. R. Chowdary, "A-Stacking and A-Bagging: Adaptive versions of ensemble learning algorithms for spoof fingerprint detection," Expert Systems with Applications, vol. 146, p. 113160, 2020/05/15/ 2020, doi: https://doi.org/10.1016/j.eswa.2019.113160.
[41] S. Moral-García, C. J. Mantas, J. G. Castellano, M. D. Benítez, and J. Abellán, "Bagging of credal decision trees for imprecise classification," Expert Systems with Applications, vol. 141, p. 112944, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.eswa.2019.112944.
[42] A. Sharafati, S. B. Haji Seyed Asadollah, and N. Al-Ansari, "Application of bagging ensemble model for predicting compressive strength of hollow concrete masonry prism," Ain Shams Engineering Journal, 2021/05/13/ 2021, doi: https://doi.org/10.1016/j.asej.2021.03.028.
[43] U. Anyaoha, A. Zaji, and Z. Liu, "Soft computing in estimating the compressive strength for high-performance concrete via concrete composition appraisal," Construction and Building Materials, vol. 257, p. 119472, 2020/10/10/ 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.119472.
[44] H. Nguyen, T. Vu, T. P. Vo, and H.-T. Thai, "Efficient machine learning models for prediction of concrete strengths," Construction and Building Materials, vol. 266, p. 120950, 2021/01/10/ 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.120950.
[45] D. Whitley, "A genetic algorithm tutorial," Statistics and computing, vol. 4, no. 2, pp. 65-85, 1994.
[46] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4: IEEE, pp. 1942-1948.
[47] J.-S. Chou and N.-M. Nguyen, "FBI inspired meta-optimization," Applied Soft Computing, vol. 93, p. 106339, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.asoc.2020.106339.
[48] S. Nandhakumar, R. Thirumalai, J. Viswaaswaran, T. A. Senthil, and V. T. Vishnuvardhan, "Investigation of production costs in manufacturing environment using innovative tools," Materials Today: Proceedings, vol. 37, pp. 1235-1238, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2020.06.433.
[49] D. Babu, V. Karunakaran, S. Gopinath, S. P. Angeline Kirubha, S. Latha, and P. Muthu, "Gui based prediction of heart stroke using artificial intelligence," Materials Today: Proceedings, 2021/04/28/ 2021, doi: https://doi.org/10.1016/j.matpr.2021.03.693.
[50] J. L. Vishart, J. Castillo-León, and W. E. Svendsen, "pyEIA: A Python-based framework for data analysis of electrochemical methods for immunoassays," SoftwareX, vol. 15, p. 100720, 2021/07/01/ 2021, doi: https://doi.org/10.1016/j.softx.2021.100720.
[51] J.-S. Chou and J.-W. Lin, "Risk-Informed Prediction of Dredging Project Duration Using Stochastic Machine Learning," Water, vol. 12, no. 6, 2020, doi: 10.3390/w12061643.
[52] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943/12/01 1943, doi: 10.1007/BF02478259.
[53] T.-T. Le, P. G. Asteris, and M. E. Lemonis, "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques," Engineering with Computers, 2021/07/04 2021, doi: 10.1007/s00366-021-01461-0.
[54] H.-B. Ly, T.-A. Nguyen, H.-V. Thi Mai, and V. Q. Tran, "Development of deep neural network model to predict the compressive strength of rubber concrete," Construction and Building Materials, vol. 301, p. 124081, 2021/09/27/ 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124081.
[55] M.-S. T. Nguyen, M.-C. Trinh, and S.-E. Kim, "Uncertainty quantification of ultimate compressive strength of CCFST columns using hybrid machine learning model," Engineering with Computers, 2021/05/29 2021, doi: 10.1007/s00366-021-01339-1.
[56] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons, 2012.
[57] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, "Support vector regression machines," in Advances in neural information processing systems, 1997, pp. 155-161.
[58] A. M. Prasad, L. R. Iverson, and A. Liaw, "Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction," Ecosystems, vol. 9, no. 2, pp. 181-199, 2006/03/01 2006, doi: 10.1007/s10021-005-0054-1.
[59] K. Szafranek, "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, 2019/05/07/ 2019, doi: https://doi.org/10.1016/j.ijforecast.2019.04.007.
[60] E. M. de Oliveira and F. L. Cyrino Oliveira, "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, vol. 144, pp. 776-788, 2018/02/01/ 2018, doi: https://doi.org/10.1016/j.energy.2017.12.049.
[61] X. Ding, M. Hasanipanah, H. Nikafshan Rad, and W. Zhou, "Predicting the blast-induced vibration velocity using a bagged support vector regression optimized with firefly algorithm," Engineering with Computers, vol. 37, no. 3, pp. 2273-2284, 2021/07/01 2021, doi: 10.1007/s00366-020-00937-9.
[62] X. Developers, "XGBoost Parameters," 2020. [Online]. Available: https://xgboost.readthedocs.io/en/latest/parameter.html.
[63] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794.
[64] B. Pan, "Application of XGBoost algorithm in hourly PM2. 5 concentration prediction," in IOP conference series: Earth and environmental science, 2018, vol. 113, no. 1: IOP publishing, p. 012127.
[65] K. K. Yun, S. W. Yoon, and D. Won, "Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process," Expert Systems with Applications, vol. 186, p. 115716, 2021/12/30/ 2021, doi: https://doi.org/10.1016/j.eswa.2021.115716.
[66] E. Amoosoltani, A. Ameli, F. Jabari, and S. Asadi, "Employing a hybrid GA-ANN method for simulating fracture toughness of RCC mixture containing waste materials," Construction and Building Materials, vol. 272, p. 121928, 2021/02/22/ 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.121928.
[67] K. Song, F. Yan, T. Ding, L. Gao, and S. Lu, "A steel property optimization model based on the XGBoost algorithm and improved PSO," Computational Materials Science, vol. 174, p. 109472, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.commatsci.2019.109472.
[68] D.-K. Bui, T. Nguyen, J.-S. Chou, H. Nguyen-Xuan, and T. D. Ngo, "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete," Construction and Building Materials, vol. 180, pp. 320-333, 2018/08/20/ 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.05.201.
[69] J. Zhou et al., "Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques," Geoscience Frontiers, vol. 12, no. 3, p. 101091, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.gsf.2020.09.020.
[70] N. Kardani, A. Zhou, M. Nazem, and X. Lin, "Modelling of municipal solid waste gasification using an optimised ensemble soft computing model," Fuel, vol. 289, p. 119903, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.fuel.2020.119903.
[71] S. Simsek, A. Dag, T. Tiahrt, and A. Oztekin, "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, vol. 100, p. 102296, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.omega.2020.102296.
[72] D. Sattar and R. Salim, "A smart metaheuristic algorithm for solving engineering problems," Engineering with Computers, vol. 37, no. 3, pp. 2389-2417, 2021/07/01 2021, doi: 10.1007/s00366-020-00951-x.
[73] I. Naruei and F. Keynia, "Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems," Engineering with Computers, 2021/06/17 2021, doi: 10.1007/s00366-021-01438-z.
[74] T. G. Dietterich, "Ensemble Methods in Machine Learning," in Multiple Classifier Systems, Berlin, Heidelberg, 2000// 2000: Springer Berlin Heidelberg, pp. 1-15.
[75] C. Schaffer, "Selecting a classification method by cross-validation," Machine Learning, vol. 13, no. 1, pp. 135-143, 1993/10/01 1993, doi: 10.1007/BF00993106.
[76] G. Jiang and W. Wang, "Error estimation based on variance analysis of k-fold cross-validation," Pattern Recognition, vol. 69, pp. 94-106, 2017/09/01/ 2017, doi: https://doi.org/10.1016/j.patcog.2017.03.025.
[77] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," presented at the Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2, Montreal, Quebec, Canada, 1995.
[78] S. W. Greenhouse and S. Geisser, "On methods in the analysis of profile data," Psychometrika, vol. 24, no. 2, pp. 95-112, 1959.
[79] A. Kumar, "Hold-out Method for Training Machine Learning Models," 2020/12/22 2020, doi: https://vitalflux.com/hold-out-method-for-training-machine-learning-model/.
[80] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.
[81] Y.-W. Chang and M.-Y. Liao, "A seasonal ARIMA model of tourism forecasting: The case of Taiwan," Asia Pacific journal of Tourism research, vol. 15, no. 2, pp. 215-221, 2010.
[82] W. University, "Weka 3: Machine Learning Software in Java," doi: https://www.cs.waikato.ac.nz/ml/weka/index.html.
[83] T. MathWorks, "MATLAB," 1994-2021, doi: https://zh.wikipedia.org/wiki/MATLAB.
[84] P. S. Foundation, "Python," 2001-2021, doi: https://www.python.org/.
[85] Z. Markov and I. Russell, "An introduction to the WEKA data mining system," ACM SIGCSE Bulletin, vol. 38, no. 3, pp. 367-368, 2006.
[86] TIOBE, "TIOBE Index for July 2021," 2021, doi: https://www.tiobe.com/tiobe-index/.
[87] "使用Python Tkinter库创建GUI," 2018, doi: https://blog.csdn.net/LZH_12345/article/details/80242181.
[88] J.-S. Chou, D.-N. Truong, and C.-F. Tsai, "Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics," Mathematics, vol. 9, no. 6, 2021, doi: 10.3390/math9060686.
[89] D. Jamunaa, G. K. Mahanti, and F. N. Hasoon, "Synthesis of phase-only position optimized reconfigurable uniformly excited linear antenna arrays with a single null placement," Journal of King Saud University - Engineering Sciences, vol. 32, no. 6, pp. 360-367, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.jksues.2019.04.005.
[90] D. Khamari, R. K. Sahu, T. S. Gorripotu, and S. Panda, "Automatic generation control of power system in deregulated environment using hybrid TLBO and pattern search technique," Ain Shams Engineering Journal, vol. 11, no. 3, pp. 553-573, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.asej.2019.10.012.
[91] 張磊, "XGBoost參數調優小結," doi: https://kknews.cc/tech/gaxe6pm.html.
[92] S. Chen, J. Montgomery, and A. Bolufé-Röhler, "Measuring the curse of dimensionality and its effects on particle swarm optimization and differential evolution," Applied Intelligence, vol. 42, no. 3, pp. 514-526, 2015.

無法下載圖示 全文公開日期 2031/09/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE