簡易檢索 / 詳目顯示

研究生: 陳聖廷
Sheng-Ting Chen
論文名稱: 新型四相交錯式耦合電感設計與研製
Design and Implementation of a Novel Four-Phase Interleaved Coupled Inductor
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉宇晨
Yu-Chen Liu
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 141
中文關鍵詞: 耦合電感磁通抵消調整耦合係數寬能隙元件
外文關鍵詞: Coupled inductor, Flux cancellation, Adjustable coupling coefficient, Wide bandgap
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個新型四相交錯式耦合電感,採用對稱的磁路架構,使每一相電感自感量均相等,利用整合鐵心達到中心柱完全直流磁通抵消以降低鐵心磁通密度以及鐵心損耗,與傳統鐵心結構相比中心柱截面積縮減四倍,同時具有調整氣隙控制磁阻比例關係來調整耦合係數之特點,解決傳統耦合電感無法同時兼具鐵心縮減與調整耦合係數的問題。調整耦合係數能改變等效感量與磁通抵消量值,進而評估不同耦合係數對應的電流有效值與磁通密度,透過調整耦合係數的特點,得到最佳鐵心損耗、銅線損耗與開關損耗的平衡點,在降壓或升壓轉換器的任意輸入輸出條件與磁性元件規格下,使轉換器達到最佳效率。文中解釋耦合係數對於等效感量的影響,以及耦合係數對於電流有效值與漣波量值的關係。在開關損耗方面,採用了比傳統矽元件具有更高切換速度的寬能隙元件氮化鎵來降低開關的損耗。針對鐵心分析的部份,提出利用磁阻模型說明鐵心磁通與耦合係數的對應關係,並探討耦合係數對鐵心直流磁通抵消的量值。而磁性元件採用了參數化的設計方式,在有限的佔地面積下,考量鐵心損耗與銅線損耗設計鐵心。接著在鐵心優化的部份,同時考量氣隙擺放位置對於邊緣磁通的影響,利用ANSYS Maxwell模擬驗證邊緣磁通對繞組的影響,最後模擬比較本論文之鐵心結構與傳統兩相耦合電感在相同電路規格條件下的電感損耗與佔地面積表現。最終實現切換頻率在100 kHz、輸入電壓為400 V - 450 V、輸出電壓為370 V、輸出功率為2000 W的條件下,滿載效率達99.5%的降壓式轉換器。


    In this thesis, a novel type of four-phase interleaved coupled inductor is proposed. The symmetrical magnetic path of the structure is able to make the inductance of the coupled inductor even in every phase. This novel inductor structure has flux cancellation to reduce the volume of the magnetic core. Meanwhile, this structure is able to adjust the coupling coefficient via the proportion of the gap reluctance, which overcomes the disadvantage of the conventional coupled inductor. The optimal point of losses can be selected in any input and output specification of buck or boost converter by using coupling coefficient control. The influence of the equivalent inductance based on coupling coefficient and the relationship between the coupling coefficient, RMS value and current ripple are discussed. Moreover, a wide bandgap device, namely gallium nitride, replaces the conventional silicon device to reduce switching loss in the power device. The relationship between the flux and coupling coefficient are discussed by using the reluctance model. Also, the influence of flux cancellation according to the coupling coefficient is analyzed in this structure. Within a limited footprint for the magnetics, optimal points of the core loss and copper loss are calculated. ANSYS Maxwell is used to optimize the copper loss based on the fringing flux in different gap positions, then present the comparison of the losses and footprint for the novel structure and the conventional coupled inductor. Finally, a buck converter is achieved with a switching frequency operating at 100 kHz, an input voltage of 400 V - 450 V, an output voltage of 370 V, an output power of 2000 W and maximum efficiency of 99.5%.

    摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 章節大綱 第二章 多相耦合電感原理分析 2.1 耦合電感原理及介紹 2.2 耦合電感數學模型 第三章 新型四相交錯式耦合電感分析 3.1 穩態動作時序分析 3.1.1 相移90度之分析 3.1.2 相移180度之分析 3.2 穩態電感電流漣波量值與耦合係數關係之分析 第四章 新型四相交錯式耦合電感分析與設計 4.1 新型四相交錯式耦合電感架構設計 4.1.1 直流磁通對鐵心損耗的影響 4.1.2 新型四相交錯式耦合電感磁阻模型 4.1.3 氣隙磁阻比例對直流磁通的影響 4.2 新型四相交錯式耦合電感分析與優化 4.2.1 電感損耗優化設計 4.2.2 邊緣磁通效應 4.2.3 電感優化設計流程 4.2.4 ANSYS Maxwell磁性元件損耗模擬 第五章 實驗量測結果 5.1 實體電路圖 5.2 實驗量測波形 5.3 實驗量測數據 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] P. L. Wong, P. Xu, P. Yang and F. C. Lee, “Performance improvements of interleaving VRMs with coupling inductors,” in IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 499-507, July 2001, doi: 10.1109/63.931059.
    [2] W. Wu, N. C. Lee and G. Schuellein, “Multi-phase buck converter design with two-phase coupled inductors,” Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06., 2006, pp. 6 pp.-, doi: 10.1109/APEC.2006.1620582.
    [3] S. Zhang, “Analysis and minimization of the input current ripple of interleaved boost converter,” 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 852-856, doi: 10.1109/APEC.2012.6165918.
    [4] J. Li, C. R. Sullivan and A. Schultz, “Coupled-inductor design optimization for fast-response low-voltage DC-DC converters,” APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335), 2002, pp. 817-823 vol.2, doi: 10.1109/APEC.2002.989338.
    [5] J. Zhu and A. Pratt, “Capacitor ripple current in an interleaved PFC converter,” in IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1506-1514, June 2009, doi: 10.1109/TPEL.2009.2014164.
    [6] J. Imaoka, M. Yamamoto, Y. Nakamura and T. Kawashima, “Analysis of output capacitor voltage ripple in multi-phase transformer-linked Boost Chopper circuit,” IEEJ Journal IA, Vol. 2, No. 5, pp. 252–260, 2013.
    [7] S. Lu, M. Mu, Y. Jiao, F. C. Lee and Z. Zhao, “Coupled inductors in interleaved multiphase three-level DC–DC converter for high-power applications,” in IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 120-134, Jan. 2016, doi: 10.1109/TPEL.2015.2398572.
    [8] F. Yang, X. Ruan, Y. Yang and Z. Ye, “Interleaved critical current mode boost PFC converter with coupled inductor,” in IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2404-2413, Sept. 2011, doi: 10.1109/TPEL.2011.2106165.
    [9] C. Wang, M. Xu, B. Lu and F. C. Lee, “New architecture for MHz switching frequency PFC,” in Proc. IEEE Applied Power Electronics Conference (APEC), 2007, pp. 179–185.
    [10] D. Neumayr, D. Bortis and J. W. Kolar, “The essence of the little box challenge-part A: Key design challenges & solutions,” in CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, pp. 158-179, June 2020, doi: 10.24295/CPSSTPEA.2020.00014.
    [11] D. Neumayr, D. Bortis and J. W. Kolar, “The essence of the little box challenge-part B: Hardware demonstrators & comparative evaluations,” in CPSS Transactions on Power Electronics and Applications, vol. 5, no. 3, pp. 251-272, Sept. 2020, doi: 10.24295/CPSSTPEA.2020.00022.
    [12] C. W. Halsted and M. D. Manjrekar, “A critique of little box challenge inverter designs: Breaking from traditional design tradeoffs,” in IEEE Power Electronics Magazine, vol. 5, no. 4, pp. 52-60, Dec. 2018, doi: 10.1109/MPEL.2018.2873992.
    [13] Google, “Detailed inverter specifications, testing procedure, and technical approach and testing application requirements for the little box challenge,” Google, Technical Report, 2015. [Online]. Available:https://www.littleboxchallenge.com.
    [14] X. Chen et al., “Adaptive on time controlled double-line-frequency ripple suppressor with fast dynamic response and high efficiency,” in IEEE Access, vol. 8, pp. 179692-179701, 2020, doi: 10.1109/ACCESS.2020.3021710.
    [15] Y. Liao, C. Lai and J. Liaw, “Analysis of double line frequency for PWM rectifier using instantaneous power method,” 2008 SICE Annual Conference, 2008, pp. 758-761, doi: 10.1109/SICE.2008.4654757.
    [16] J. Lyu, W. Hu, K. Yao, X. Lu, F. Wu and J. Wu, “Research on input current ripple reduction of two-stage single-phase PV grid inverter,” 2014 16th European Conference on Power Electronics and Applications, 2014, pp. 1-8, doi: 10.1109/EPE.2014.6910775.
    [17] Z. Wei, X. Deng, C. Gong, J. Chen and F. Zhang, “A novel technique of low frequency input current ripple reduction in two-stage DC-AC inverter,” IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 139-143, doi: 10.1109/IECON.2012.6388818.
    [18] D. Camponogara, D. R. Vargas, M. A. Dalla Costa, J. M. Alonso, J. Garcia and T. Marchesan, “Capacitance reduction with an optimized converter connection applied to LED drivers,” in IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 184-192, Jan. 2015, doi: 10.1109/TIE.2014.2327591.
    [19] K. I. Hwu, K. W. Huang and Y. H. Chen, “Two-stage-cascaded Li-battery charger with current ripple considered,” 2010 5th IEEE Conference on Industrial Electronics and Applications, 2010, pp. 2165-2168, doi: 10.1109/ICIEA.2010.5515161.
    [20] J. l. Li, A. Stratakos, A. Schultz and C. R. Sullivan, “Using coupled inductors to enhance transient performance of multi-phase buck converters,” Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04., 2004, pp. 1289-1293 vol.2, doi: 10.1109/APEC.2004.1295989.
    [21] P. Xu, J. Wei and F. C. Lee, “Multiphase coupled-buck converter-a novel high efficient 12 V voltage regulator module,” in IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 74-82, Jan. 2003, doi: 10.1109/TPEL.2002.807082.
    [22] R. Guo, C. Wang and T. Li, “Optimum design of coupling inductors for magnetic integration in three-phase interleaving buck DC/DC converter,” 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013, pp. 1029-1033, doi: 10.1109/ICIEA.2013.6566518.
    [23] 陳震,新型整合型三相交錯式耦合電感設計與研製,國立台灣科技大學電子工程系碩士論文,2016年。
    [24] D. Ebisumoto et al., “Design of a four-phase interleaved boost circuit with closed-coupled inductors,” 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1-6, doi: 10.1109/ECCE.2016.7855022.
    [25] D. Nguyen, C. W. Chen, J. S. Lai and Y. C. Liu, “Matrix inductor with DC-bias effect reduction capability for GaN-based DC-DC boost converter,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2597-2601, Nov. 2020, doi: 10.1109/TCSII.2019.2960759.
    [26] C. P. Steinmetz, “The general equations of the electric circuit,” in Proceedings of the American Institute of Electrical Engineers, vol. 27, no. 7, pp. 1121-1195, July 1908, doi: 10.1109/PAIEE.1908.6742132.
    [27] K. Venkatachalam, C. R. Sullivan, T. Abdallah and H. Tacca, “Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters,” 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proceedings., 2002, pp. 36-41, doi: 10.1109/CIPE.2002.1196712.
    [28] J. Li, T. Abdallah and C. R. Sullivan, “Improved calculation of core loss with nonsinusoidal waveforms,” Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 2001, pp. 2203-2210 vol.4, doi: 10.1109/IAS.2001.955931.
    [29] D. Lin, P. Zhou, W. N. Fu, Z. Badics and Z. J. Cendes, “A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis,” in IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1318-1321, March 2004, doi: 10.1109/TMAG.2004.825025.
    [30] J. Muhlethaler, J. Biela, J. W. Kolar and A. Ecklebe, “Core losses under the DC bias condition based on Steinmetz parameters,” in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 953-963, Feb. 2012, doi: 10.1109/TPEL.2011.2160971.
    [31] Brockmeyer, “Experimental evaluation of the influence of DC-premagnetization on the properties of power electronic ferrites,” Proceedings of Applied Power Electronics Conference. APEC '96, 1996, pp. 454-460 vol.1, doi: 10.1109/APEC.1996.500481.
    [32] W. K. Mo, D. K. W. Cheng and Y. S. Lee, “Simple approximations of the DC flux influence on the core loss power electronic ferrites and their use in design of magnetic components,” in IEEE Transactions on Industrial Electronics, vol. 44, no. 6, pp. 788-799, Dec. 1997, doi: 10.1109/41.649940.
    [33] V. C. Valchev, A. P. Van den Bossche and D. M. Van de Sype, “Ferrite losses of cores with square wave voltage and DC bias,” 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005., 2005, pp. 5 pp.-, doi: 10.1109/IECON.2005.1569013.
    [34] Y. Wang and Z. Liu, “Estimation model of core loss under DC bias,” in IEEE Transactions on Applied Superconductivity, vol. 26, no. 7, pp. 1-5, Oct. 2016, Art no. 0608905, doi: 10.1109/TASC.2016.2594806.
    [35] J. S. Lai, C. Y. Lin, T. C. Liu, Lanhua Zhang and Xiaonan Zhao, “Design optimization for ultrahigh efficiency buck regulator using wide bandgap devices,” in IEEE Energy Conversion Congress and Exposition, October 2015.
    [36] W. A. Roshen, “Fringing field formulas and winding loss due to an air gap,” in IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3387-3394, Aug. 2007, doi: 10.1109/TMAG.2007.898908.
    [37] M. Fu, C. Fei, Y. Yang, Q. Li and F. C. Lee, “Optimal design of planar magnetic components for a two-stage GaN-based DC–DC converter,” in IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3329-3338, April 2019, doi: 10.1109/TPEL.2018.2849741.
    [38] J. Hu and C. R. Sullivan, “AC resistance of planar power inductors and the quasidistributed gap technique,” in IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 558-567, July 2001, doi: 10.1109/63.931082.
    [39] S. Mukherjee, Y. Gao and D. Maksimović, “Reduction of AC winding losses due to fringing-field effects in high-frequency inductors with orthogonal air gaps,” in IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 815-828, Jan. 2021, doi: 10.1109/TPEL.2020.3002507.
    [40] J. Zheng and W. Chen, “Air gap layout optimization method for inductor-integrated high-power high-frequency transformer,” 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019, pp. 1-3, doi: 10.1109/EDSSC.2019.8754155.
    [41] R. E. P. Frost, P. L. Lewin and M. Spong, “An investigation into the suitability of insulated core transformer technology for an ultra high voltage power supply,” in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 2, pp. 501-507, April 2019, doi: 10.1109/TDEI.2019.007751.

    無法下載圖示 全文公開日期 2024/09/07 (校內網路)
    全文公開日期 2024/09/07 (校外網路)
    全文公開日期 2024/09/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE