簡易檢索 / 詳目顯示

研究生: 黃國鈞
Kuo-Chun Huang
論文名稱: DLP型3D連續列印之探討及應用
Study on DLP-type continuous 3D Printing and its application
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 郭俊良
Chun-Liang Kuo
林鼎晸
Ding-Zheng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 3D連續列印LED封裝透鏡隱形眼鏡微針貼片
外文關鍵詞: 3D continuous printing, LED packaging lens, contact lens, microneedle patch
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下照式光聚合技術因為分離力而限制了製造的速度,而基於DLP形式的技術以Carbon3D 的技術產生死區的方式為主,藉由死區降低其分離力,提升整體列印速度。本實驗室所提出使用抑制薄膜的技術,也可以產生死區提升列印速度。藉由死區可以進行主軸只有抬升的連續列印,除了能夠加快列印速度,也可以使用較低的切層厚度進行列印,得到光滑的表面。先前研究對於抑制膜還停留在高速列印,尚未對連續列印的部分進行探討,本研究目的為藉由抑制薄膜技術進行連續列印,並達到表面粗糙度的改善。
    本研究先將抑制薄膜進行連續列印限制的測試,得知連續列印的面積限制,藉由受力分析得知連續列印參數對於曲線的影響,發現在穩定列印狀況下並不會有曲線變化。使用4 µm之層厚進行不同應用端的驗證,成功列印出具有-15°逆拔膜角設計之LED封裝透鏡,並在切層厚度4 µm的限制下,得到表面粗糙度為0.19 µm的隱形眼鏡,在使用相同切層厚度的情況下,連續列印與微上下列印的表面粗糙度相差3倍,最後藉由性質差異較大的樹脂成功列印出具有光滑表面的微針貼片。


    The bottom-up photopolymerization technology have limitation in the manufacturing speed due to the separation force. In contrast, Carbon3D technology generate a dead zone, which reduces the separation force and increases the overall printing speed. This laboratory uses the suppression film to generate dead zones. The dead zone can be used to carry out continuous printing. On previous research, the high-speed printing only discusses about the inhibition film, and the continuous printing part has yet to be discussed. The purpose of this research is to carry out continuous printing by inhibiting thin film technology and to achieve the improvement of surface roughness.
    The inhibition film was first tested to know the area limit of continuous printing. Furthermore, through force analysis, we know the influence of continuous printing parameters on the separation force curve. Using a 4 μm layer thickness, we successfully printed an LED package lens with an -15°undercut design and obtained a contact lens with a surface roughness of 0.19 μm. With the same slice thickness, the surface roughness of continuous printing is three times better than micro printing. Finally, a microneedle patch with a smooth surface was successfully printed using a resin with a large property difference.

    目錄 摘 要 III 致 謝 V 圖目錄 X 表目錄 XV 第1章 緒論 1 研究背景 1 1.1 研究動機與目的 3 1.2 研究方法 4 1.3 論文架構 5 第2章 文獻探討 7 2.1 積層製造技術 7 2.1.1 積層製造技術簡介 7 2.1.2 光聚合固化技術(Vat Photopolymerization) 8 2.2 下照式VP降低分離力達到高速列印之方法 11 2.2.1 Carbon 11 2.2.2 EnvisionTEC 13 2.2.3 NewPro3D 14 2.2.4 Nexa3D 15 2.3 連續列印應用相關研究 16 2.3.1 CLIP相關研究 16 2.3.2 其他連續列印方法 18 2.4 本實驗室相關研究回顧 20 第3章 實驗設備與列印方式 24 3.1 下照式DLP型3D列印機 24 3.1.1 動態光罩產生器 25 3.1.2 移動滑台 27 3.1.3 控制軟體 28 3.2 成品量測儀器 28 3.2.1 雷射共軛焦顯微鏡 28 3.2.2 光學顯微鏡 29 3.2.3 分厘卡 30 3.2.4 光功率測量儀 31 3.2.5 荷重元 31 3.3 樹脂材料 32 3.4 抑制薄膜厚度選用 34 3.5 列印方式與參數設定 36 3.5.1 列印準備 36 3.5.2 .列印方式 37 3.5.3 列印模式參數設定 41 3.6 連續列印參數調校策略 45 第4章 連續列印測試 47 4.1.1 列印限制 47 4.1.2 列印限制測試結果 48 4.1.3 連續列印平台受力分析 49 4.1.4 列印結果與討論 54 4.1.5 層厚控制測量 59 第5章 連續列印之應用驗證 63 5.1.1 LED封裝透鏡設計 63 5.1.2 封裝透鏡列印結果 66 5.1.3 隱形眼鏡模型設計 69 5.1.4 隱形眼鏡列印方向 70 5.1.5 隱形眼鏡列印結果 71 5.1.6 良率測試 76 5.2 不同樹脂材料列印測試 79 5.2.1 微針貼片設計 79 5.2.2 微針列印結果 81 第6章 結論與未來研究方向 84 6.1 結論 84 6.2 未來研究方向 85 參考文獻 86 附錄一 90 附錄二 91

    [1] Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Samulski, E.T. (2015). Continuous Liquid Interface Production of 3D Objects. Science, 347(6228), 1349-1352.
    [2] Shao, G., Hai, R., & Sun, C. (2020). 3D printing customized optical lens in minutes. Advanced Optical Materials, 8(4), 1901646.
    [3] Jeng, J.Y., Cheng, Y.L., Chen, D.S., Chen, Z.Y. “Method for reducing drawing force in forming process of photocurable material” April 6, 2 ,US 10,967,563 B2
    [4] ASTM F2792 Standard Terminology for Additive Manufacturing Technologies.
    [5] Gibson, I., Rosen, D., Stucker, B. (2015). Vat Photopolymerization Processes. In: Additive Manufacturing Technologies. Springer, New York, NY.
    [6] Hideo Kodama (1981), "Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer", Review of Scientific Instruments 52, 1770-1773
    [7] Hornbeck, L. J. (1996, August). Digital light processing and MEMS: An overview. In Digest IEEE/Leos 1996 Summer Topical Meeting. Advanced Applications of Lasers in Materials and Processing (pp. 7-8). IEEE
    [8] Hashmi, S. (2014). Comprehensive materials processing. Newnes.
    [9] Taormina G, Sciancalepore C, Messori M, Bondioli F. (2018). 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. Journal of Applied Biomaterials & Functional Materials. 16(3):151-160.
    [10] Rau, D. A., Forgiarini, M., & Williams, C. B. (2021). Hybridizing Direct Ink Write and mask-projection Vat Photopolymerization to enable additive manufacturing of high viscosity photopolymer resins. Additive Manufacturing, 42, 101996.
    [11] Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., Mecham, S. J., & DeSimone, J. M. (2016). Layerless fabrication with continuous liquid interface production. Proceedings of the National Academy of Sciences, 113(42), 11703-11708.
    [12] Shkolnik, A., El-Siblani, A., & John, H. (2011). U.S. Patent No. 7,892,474. Washington, DC: U.S. Patent and Trademark Office.
    [13] Newpro3d https://newpro3d.com/ili-technology/ (Dec. 12. 2022)
    [14] Nexa3d https://nexa3d.com/about/ (Dec. 12. 2022)
    [15] NEXA3D INC. - Method and apparatus for photo-curing with self- lubricating substratum for the formation of three-dimensional objects ,US10357919
    [16] Zhang, F., Zhu, L., Li, Z., Wang, S., Shi, J., Tang, W., ... & Yang, J. (2021). The recent development of vat photopolymerization: A review. Additive Manufacturing, 48, 102423.
    [17] Caudill, C., Perry, J. L., Iliadis, K., Tessema, A. T., Lee, B. J., Mecham, B. S., ... & DeSimone, J. M. (2021). Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. Proceedings of the National Academy of Sciences, 118(39), e2102595118.
    [18] Hsiao, K., Lee, B. J., Samuelsen, T., Lipkowitz, G., Kronenfeld, J. M., Ilyn, D., ... & DeSimone, J. M. (2022). Single-digit-micrometer-resolution continuous liquid interface production. Science Advances, 8(46), eabq2846.
    [19] Walker, D.A.,Hedrick, J.L.,Mirkin, C.A. (2019). Rapid, Large-volume, Thermally Controlled 3D Printing Using a Mobile Liquid Interface. Science, 366(6463), 360-364.
    [20] Zhang, Y., Dong, Z., Li, C., Du, H., Fang, N. X., Wu, L., & Song, Y. (2020). Continuous 3D printing from one single droplet. Nature communications, 11(1), 1-10.
    [21] De Beer, M. P., Van Der Laan, H. L., Cole, M. A., Whelan, R. J., Burns, M. A., & Scott, T. F. (2019). Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Science advances, 5(1), eaau8723.
    [22] 陳貞佑,2019,“下照式DLP高速3D列印失敗因子之探討”,國立臺灣科技大學碩士論文。
    [23] 陳柏源,2020,“DLP型連續列印大面積樹脂回流之探討”,國立臺灣科技大學碩士論文。
    [24] 蔡昀,2020,“DLP 型連續列印槽底抑制薄膜之改善”,國立臺灣科技大學碩士論文。
    [25] Young Optics Co., LTD. https://www.youngoptics.com/top-95-product81 (Dec. 12. 2022)
    [26] THK Taiwan Co., LTD https://tech.thk.com/ct/products/pdf/tc_a02_086.pdf (Dec. 12. 2022)
    [27] Litoon Automation Technology., LTD http://www.ffuba.com/front/bin/ptdetail.phtml?Part=ls-bs3&Category=177729 (Dec. 12. 2022)
    [28] Taiwan Teama Technology Co., LTD https://www.taiwanteama.com.tw/rs-f2-gpcl.html (Dec. 12. 2022)
    [29] 帆益帆益科技教育股份有限公司
    [30] Lipkowitz, G., Samuelsen, T., Hsiao, K., Lee, B., Dulay, M. T., Coates, I., ... & DeSimone, J. M. (2022). Injection continuous liquid interface production of 3D objects. Science Advances, 8(39), eabq3917.
    [31] Xu, Y., Huang, P., To, S., Zhu, L. M., & Zhu, Z. (2022). Low‐Cost Volumetric 3D Printing of High‐Precision Miniature Lenses in Seconds. Advanced Optical Materials, 10(17), 2200488.

    無法下載圖示 全文公開日期 2025/01/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE