簡易檢索 / 詳目顯示

研究生: 蔡媗卉
HSUAN-HUI TSAI
論文名稱: 碳化含爐石粉水泥砂漿之氯離子分布研究
Study on Chloride Ion Distribution in Carbonated Cement Mortar Containing Ground Granulated Blast-Furnace Slag
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Ta-Peng Chang
鄭安
An Cheng
黃中和
Chung-Ho Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 201
中文關鍵詞: 水淬高爐石粉碳化氯離子砂漿
外文關鍵詞: Ground granulated blast-furnace slag (GGBS), carbonation, chloride ion, mortar
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 評估鋼筋混凝土的耐久性質主要依據碳化與氯離子滲透,然而碳化過程中改變漿體的物化性,如何影響氯離子滲透的行為仍無定論。有鑑於此,本研究探討砂漿碳化對其中氯離子分布的影響,進而推估其滲透行為。過程中,以水泥:砂重=1:2.75設計水膠比0.6之砂漿配比再以水淬高爐石粉部分取代水泥,分為三組試驗,分別使用不同的拌合與養護方式,包括拌合時摻入鹽水、浸泡鹽水中再碳化及交互浸泡鹽水與碳化,於不同齡期量測碳化深度與酸溶性、水溶性氯離子濃度。試驗結果發現,試體重量隨著碳化時間而增加,於齡期91天之含爐石粉砂漿試體碳化後,其碳化深度皆大於無添加爐石粉之砂漿,另外發現齡期28天與齡期91天之砂漿試體受碳化後氯離子分布變化不同,而添加爐石粉對於氯離子擴散程度也有所影響,碳化至28天時,皆會造成自由氯離子的濃度增加。


    The durability of reinforced concrete is evaluated mainly by the carbonation and the chloride ingress. The carbonation modifies the physical and chemical properties of the paste. However, how the carbonation influences the chloride ingress is still in debate. In view of this issue, this study explored the influences of the carbonation on the distribution of the chloride ions and discussed the chloride ingress under carbonation. During the study, the mortar specimens were prepared at water:fine aggregates=1:2.75 and water-cement ratio of 0.6. In some specimens, the cement was partially replaced by the ground granulated blast-furnace slag (GGBS). Three kinds of the specimens with different mixing and curing methods were prepared, including the carbonated ones prepared with mixing or curing with salt water and the one with alternative carbonation and curing in salt water. Results showed that the weights of the specimens were increased by the carbonation time. At age of 91 days, the carbonated mortar specimens with GGBS had higher carbonation depth than those without GGBS. The distributions of the chloride ions were influenced by ages, carbonation, and addition of GGBS. With carbonation of 28 days, the concentration of the free chlorides was increased.

    摘要I Abstract II 致謝III 目錄IV 表目錄VII 圖目錄XI 第一章 緒論1 1.1研究動機1 1.2研究目的1 1.3研究方法與流程2 第二章 文獻回顧5 2.1氯離子的基本性質5 2.1.1混凝土中氯離子來源5 2.1.2氯離子形態6 2.1.3氯離子的擴散行為7 2.1.4氯離子含量允許值8 2.2氯離子與鋼筋腐蝕關係9 2.2.1鋼筋混凝土之腐蝕機理9 2.2.2混凝土中鋼筋與氯離子濃度之關係12 2.3碳化12 2.3.1碳化原理12 2.3.2影響碳化之因素13 2.3.3碳化對混凝土性質之影響15 2.3.4混凝土碳化之測定方法15 2.4碳化與氯離子侵入對混凝土性質之複合影響17 2.4.1碳化後氯離子侵入17 2.4.2氯離子侵入後碳化18 2.4.3碳化與氯離子侵入交互循環18 2.4爐石18 第三章 試驗計畫23 3.1試驗內容及變數23 3.1.1變數說明23 3.1.2編碼說明24 3.2試驗材料與設備24 3.2.1試驗材料24 3.2.2試驗設備26 3.2.3試體製作27 3.3試驗設計28 3.3.1預加氯離子後加速碳化試驗28 3.3.2浸泡3.5%氯化鈉溶液後加速碳化28 3.3.3浸泡與碳化交互循環試驗29 3.4試驗項目29 3.4.1碳化深度試驗30 3.4.2酸溶性氯離子31 3.4.3水溶性氯離子31 3.4.4 X光繞射分析儀(XRD)32 第四章 結果與討論49 4.1前言49 4.2水淬爐石粉取代量對砂漿碳化之影響49 4.3含水淬爐石粉砂漿之碳化深度51 4.3.1砂漿無預加氯離子之碳化深度51 4.3.2砂漿預加氯離子之碳化深度52 4.3.3砂漿浸泡氯化鈉溶液之碳化深度53 4.3.4砂漿交互循環之碳化深度54 4.4含水淬爐石粉砂漿碳化後之氯離子分布55 4.4.1砂漿無預加氯離子砂漿碳化後之氯離子分布55 4.4.2砂漿預加氯離子砂漿碳化後之氯離子分布58 4.4.3砂漿浸泡氯化鈉溶液經碳化後之氯離子分布61 4.4.4砂漿經浸泡氯化鈉溶液與碳化交互循環後之氯離子分布65 第五章 結論與建議169 5.1結論169 5.2建議170 參考文獻171 附錄A 齡期28天水泥砂漿X光繞射分析圖175

    [1]ACI 222, “Guide to Design and Construction Practices.", American Concrete Institute.
    [2]ACI 318-19, “Building Code Requirements for Structural Concrete and Commentary.", American Concrete Institute.
    [3]Arya, C., Buenfeld, N.R., Newman, J.B., (1990) “Factors influencing chloride-binding in concrete." Cement and Concrete Research 20(2):291-300.
    [4]Babushkin, V.I., Matveyev, G.M., Mchedlov-Petrossyan, O.P., (1985) “Thermodynamics of Silicates". Springer-Verlag.
    [5]Berger, R.L., (2009) “Cement-Based Composites: Materials, Mechanical Properties and Performance.". New York: Taylor&Francis.
    [6]Berger, R.L., Young, J.F., Leung, K., (1972) “Acceleration of hydration of calcium silicates by carbon dioxide treatment." Nature Physical Science 240(97):16-18.
    [7]Bonen, D., Sarkar, S. L., (1995) “The effects of simulated environmental attack on immobilization of heavy metals doped in cement-based materials." Journal of Hazardous Materials 40(3):321-335.
    [8]Chang, C.F., Chen, J. W, (2006) “The experimental investigation of concrete carbonation depth." Cement and Concrete Research 36(9):1760-1767.
    [9]Crank, J., (1964) “The mathematics of diffusion."Clarendon Press.
    [10]Cui, H., Tang, W., Liu, W., Dong, Z., Xing, F., (2015) “Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms." Construction and Building Materials 93:522-527.
    [11]Drouet, E., Poyet, S., Bescop, P. L., Torrenti, J. M., Bourbon, X, (2019) “Carbonation of hardened cement pastes: Influence of temperature." Cement and Concrete Research 115:445-459.
    [12]DTU 21.4, “Technical requirements for the use of calcium chlorides and adjuvants containing chlorides in the manufacture of slurries, mortars and concretes", NF Concrete standards.
    [13]Elsalamawy, M., Mohamed, A. R., Kamal, E. M., (2019) “The role of relative humidity and cement type on carbonation resistance of concrete." Alexandria Engineering Journal 50(4):1257-1264.
    [14]Jang, J.G., Kim, H.J., Kim, H.K., Lee, H.K., (2016) “Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration." Materials & Design 93:160-167.

    [15]Jerga, J., (2004) “Physico-mechanical properties of carbonated concrete." Construction and Building Materials 18(9):645-652.
    [16]JIS R 5210 (2014) PORTLAND CEMENT, 日本工業標準.
    [17]Justnes, H., (1997) “A Review of Chloride Binding in Cementitious Systems." Nordic Concrete Research 21:48-63.
    [18]Khatib, J.M., Hibbert, J.J., (2005) “Selected engineering properties of concrete incorporating slag and metakaolin." Construction and Building Materials 19(6):460-472.
    [19]Liu, J., Qiu, Q., Chen, X., Xing, F., Han, N., He, Y., Ma, Y., (2017) “Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete." Cement and Concrete Research 95:217-225.
    [20]Matoušek, M., Drochytka, R., (1998) “Atmospheric Corrosion of Concrete": IKAS Praha.
    [21]Pytlík, P., (2000) “Concrete Technology". Brno: VUTIUM.
    [22]Mindess, S., Young, J. F., (1981) “Concrete". New Jersey:Prentice-Hall.
    [23]Ramezanianpour, A.A., Ghahari, S.A., Esmaeili, M., (2014) “Effect of combined carbonation and chloride ion ingress by an accelerated test method on microscopic and mechanical properties of concrete." Construction and Building Materials 58:138-146.
    [24]Richardson, M.G., (2014) “Fundamentals of Durable Reinforced Concrete." CRC Press.
    [25]Russell, D.P., (1999) “Influence of environmental conditions and material properties on carbonation in concrete." Queen’s University Belfast PhD Thesis.
    [26]Schweitzer, P., (2010) “Fundamentals of Corrosion.". Boca Raton: CRC Press.
    [27]Silva, C.A., Reis, R.J.P., Lameiras, F.S., Vasconcelos, W.L., (2002) “Carbonation-Related Microstructural Changes in Long-Term Durability Concrete." Materials Research 5(3):287-293.
    [28]Slegers, P.A., Rouxhet, P.G., (1976) “Carbonation of the hydration products of tricalcium silicate." Cement and Concrete Research 6(3):381-388.
    [29]Song, H.W., Kwon, S. J., (2007) “Permeability characteristics of carbonated concrete considering capillary pore structure." Cement and Concrete Research 37(6):909-915.
    [30]Song, H.W., Lee, C.H., Ann, K.Y., (2008) “Factors influencing chloride transport in concrete structures exposed to marine environments." Cement and Concrete Composites 30(2):113-121.
    [31]Wang, Y., Nanukuttan, S., Bai, Y., Basheer, P.A.M., (2017) “Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes." Construction and Building Materials 140(1):173-183.
    [32]Xu, C., Wang, C.K., Jin, W.L., (2011) “Interaction effect of chloride attack and carbonation in concrete." J. Build. Mater 14(3):376-380.
    [33]Yonezawa, T., Ashworth, V., Procter, R. P. M, (1988) “Pore Solution Composition and Chloride Effects on the Corrosion of Steel in Concrete." CORROSION 44(7):489-499.
    [34]CNS 61 R2001 卜特蘭水泥, 中國國家標準, 經濟部標準檢驗局, 台北市.
    [35]CNS 3090 R2015 預拌混凝土, 中國國家標準, 經濟部標準檢驗局, 台北市.
    [36]牛荻濤,石玉釵,雷怡生 (1995). “混凝土碳化的概率模型及碳化可靠性分析." 西安建筑科技大學學報 (03):252-256.
    [37]林金面 (2005) 工程材料. 台北市, 文荃書局股份有限公司.
    [38]林致緯,指導教授:楊仲家 (2006) 以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為, 材料工程研究所, 國立台灣海洋大學.
    [39]柯賢文 (2012). 腐蝕及其防制. 台北市, 全華圖書股份有限公司.
    [40]莊秋明 (1991). “鋼筋或預力混凝土橋樑等構造物鹽害之防治研究." 防蝕工程 5(2):14-26.
    [41]陳世政,指導教授:陳君弢 (2018). 氯離子於水泥主要成分相與卜作嵐材料的吸附行為, 營建工程所, 國立台灣科技大學.
    [42]黃兆龍 (2003). 混凝土性質與行為. 台北市, 詹氏書局.
    [43]詹穎雯 (1986). 環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究, 土木工程研究所, 國立台灣大學.
    [44]黃兆龍 (2002). 混凝土中氯離子含量檢測技術及試驗. 台北市, 詹氏書局.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE