簡易檢索 / 詳目顯示

研究生: 郭城宏
Cheng-Hong Guo
論文名稱: 應用微生物式土壤改良減緩強降雨引致之淺層崩塌:以阿里山地區崩積土為例
Applying MICP to Mitigate Shallow Landslide Induced by Heavy Rainfall:A Case Study of Colluvial Soil in the Alishan.
指導教授: 鄧福宸
Fu-Cheng Teng
口試委員: 陳韋志
Wei-Chih Chen
郭治平
Chih-Ping Kuo
鄭世豪
Shih-Hao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 163
中文關鍵詞: 微生物式引致碳酸鈣沉澱法地盤改良成本控制阿里山崩積土邊坡試驗影像分析減緩淺層崩塌
外文關鍵詞: Microbial-induced Calcium Carbonate Precipitation, Ground Improvement, Cost Control, Alishan, Colluvial Soil, Slope Testing, Image Analysis, Mitigation of Shallow Landslides
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微生物式引致碳酸鈣沉澱(Microbial-induced precipitation,MICP),為一新興之材料改良工法。其運作原理是根據微生物的成礦作用,在須改良材料中添加合適菌種與適當濃度的尿素跟離子鈣,誘導碳酸鈣在材料間隙中沉澱,達成地盤改良之目的。
    本研究中利用微生物式引致碳酸鈣沉澱技術(MICP),並同時考量漿液成本與改良成效,在圓柱重模試體中,在總體灌漿量不變前提下,調整菌液與膠結液之配比,發現提高膠結液比例對於土壤改良有更好的成效與較低的成本。
    將此比例應用改良於縮尺邊坡上,降雨過程中雖形成侵蝕溝,但由於灌漿孔位形成砂柱之結構物,並未像未改良者於降雨四小時突發大量崩塌情形。而是改變邊坡破壞型態,僅表層土沖刷帶離邊坡。因此降低邊坡坍方土量,並在多階降雨之後,邊坡仍未有大規模破壞行為。使用CPT貫入試驗,得知多階降雨後,強度方面仍保有改良成效。
    將此改良比例進一步應用於全尺寸自然邊坡試驗,並使用阿里山二萬坪地區之崩積土。未改良邊坡在降雨兩小時內,邊坡即發生破壞。經過改良,對於坡面位移可減緩約30%位移量,破壞時間延後至降雨六小時發生,位移速率相較於未改良邊坡較為平緩,且初次位移時間可延後約15至20分鐘。由於經過改良後,土壤滲透性降低,因此也有效阻止雨水滲入,減緩地下水位上升。


    Microbial Induced Calcite Precipitation (MICP) emerges as a promising method for material enhancement. Its operational principle revolves around the mineralization activity of microorganisms. Specific strains, along with appropriate concentrations of urea and calcium ions, are introduced to the material to induce the precipitation of calcium carbonate in the voids, ultimately achieving ground improvement.

    In this study, both solution cost and ground improvement effectiveness are taken into consideration. Through cylindrical model tests, the researchers adjust the ratio between microbial solution and cementation solution while keeping the overall grouting volume constant. The observation reveals that increasing the proportion of the cementation solution leads to better soil improvement at lower costs.

    Applying this optimized ratio to small-scaled slope tests reveals occurrences of rill erosion during rainfall. However, due to the formation of improved pore structures resembling sand columns, no sudden and massive collapse is observed within the first four hours of rainfall, unlike the untreated slopes. Instead, there is a change in the slope failure, with only the surface soil being washed away, resulting in a reduction in the volume of soil mass failure. Even after multiple stages of rainfall, the slope does not exhibit significant signs of extensive damage. Cone Penetration Test (CPT) results indicate that, after multiple stages of rainfall, the strength of the slope remains improved.

    Further application of this improvement ratio to full-scale slope tests, utilizing colluvial soil from Alishan, yielded significant results. The untreated slope experienced a landslide within two hours of rainfall. Following improvement, the slope displacement was reduced by approximately 30%, and the landslide was delayed until six hours of continuous rainfall. The displacement rate was more gradual compared to the untreated slope, with the initial displacement time postponed by approximately 15 to 20 minutes. The reduced permeability of the soil after improvement effectively hindered rainwater infiltration, thereby achieving a lower groundwater table.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章、 緒論 1 1.1 前言 1 1.2 研究目的與方法 1 第二章、 文獻回顧 4 2.1 坡地災害類型 4 2.2 國內淺層崩塌災害研究 7 2.3 臺灣之強降雨規範 9 2.4 臺灣之短延時強降雨研究 10 2.4.1 阿里山地區之降雨引致滑坡研究 13 2.5 模型相似定律 16 2.6 降雨與滲流引致邊坡破壞機制 17 2.6.1 室內縮尺模型降雨破壞試驗 17 2.6.2 室內全尺寸模型降雨破壞試驗 21 2.7 微生物引致碳酸鈣沉澱技術 23 2.7.1 微生物引致碳酸鈣沉澱機制 24 2.7.2 MICP技術對於土壤改良之成效 25 第三章、 土壤基本性質與微生物培養 41 3.1 土壤來源與純化 41 3.2 基本物理性質 41 3.3 土壤參數 59 3.4 菌種培養設備與方法 60 3.4.1 微生物介紹 60 3.4.2 微生物培養流程 60 3.4.3 菌液濃度檢測與調配 67 第四章、 室內圓柱重模試體改良試驗 70 4.1 試體準備與重模 70 4.2 改良液注入 71 4.3 錐尖阻抗貫入試驗(CPT test) 75 4.4 室內圓柱重模試體改良結果 76 第五章、 縮尺邊坡試驗規劃 80 5.1 模型配置 80 5.2 感測器與量測系統 83 5.3 降雨裝置與雨量校正 89 5.4 灌漿規劃 91 第六章、 全尺模型設計與試驗 94 6.1 模型配置 95 6.2 降雨裝置與雨量校正 103 6.3 灌漿來源與規劃 106 6.4 影像分析 110 第七章、 邊坡試驗結果 111 7.1 縮尺模型試驗結果 111 7.1.1 影像分析破壞歷程 111 7.1.2 水份和水壓變化 117 7.1.3 CPT貫入試驗 120 7.1.4 多階降雨 123 7.2 全尺模型試驗結果 130 7.2.1 灌漿改良過程 130 7.2.2 影像分析破壞歷程 132 7.2.3 水分和水壓變化 154 第八章、 結論與建議 158 8.1 結論 158 8.2 建議 159 參考文獻 160

    1. Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722.
    2. Al Qabany, A., Soga, K., Santamarina, C., 2012. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering 138, 992-1001.
    3. Barkouki, T., Martinez, B., Mortensen, B., Weathers, T., De Jong, J., Ginn, T., Spycher, N., Smith, R., & Fujita, Y. (2011). Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments. Transport in Porous Media, 90, 23-39.
    4. Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Frontiers in Materials, 6, 126
    5. Cheng, L., & Cord-Ruwisch, R. (2012). In situ soil cementation with ureolytic bacteria by surface percolation. Ecological Engineering, 42, 64-72.
    6. Cogan, J., & Gratchev, I. (2019). A study on the effect of rainfall and slope characteristics on landslide initiation by means of flume tests. Landslides, 16(12), 2369-2379
    7. Cui, M.-J., Zheng, J.-J., Zhang, R.-J., Lai, H.-J., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 12, 971-986.
    8. DeJong, J. T., Fritzges, M. B. and Nusslein K. ,2006 “Microbially induced cementation to control sand response to undrained shear,” Journal of Geotechnical and Geoenvironmental Engineering, pp. 1381-1392.
    9. DeJong, J.T., Mortensen, B.M., Martinez, B.C., Nelson, D.C., 2010.“Bio-mediated soil improvement.” Ecological Engineering 36, 197-210.
    10. Gomez, M. G., Graddy, C. M., DeJong, J. T., & Nelson, D. C. (2019). Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms. Scientific reports, 9(1), 11517.
    11. Chen Zeng; Yvo Veenis; Caitlyn A. Hall, S.M.ASCE; Elizabeth Stallings Young,2021, “Experimental and Numerical Analysis of a Field Trial Application of Microbially Induced Calcite Precipitation for Ground Stabilization”,Journal of Geotechnical and Geoenvironmental Engineering/Volume 147 Issue 7
    12. Harkes, M. P., Van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117.
    13. Huang, C.-C., & Yuin, S.-C. (2010). Experimental investigation of rainfall criteria for shallow slope failures. Geomorphology, 120(3-4), 326-338.
    14. Kakelar, M. M., Ebrahimi, S., & Hosseini, M. (2016). Improvement in soil grouting by biocementation through injection method. Asia‐Pacific Journal of Chemical Engineering, 11(6), 930-938.
    15. Lee, D.-H., Lai, M.-H., Wu, J.-H., Chi, Y.-Y., Ko, W.-T., & Lee, B.-L. (2013). Slope management criteria for Alishan Highway based on database of heavy rainfall-induced slope failures. Engineering geology, 162, 97-107.
    16. Lin H.-D., Huang J.-R., Wang W.-C., and Chen C.-W. 2019 “Study of an unsaturated slope failure due to rainfall infiltration in Wenshan District of Taipei city” Journal of GeoEngineering, Vol. 14, No. 4, dx.doi.org/10.6310/jog.201912_14(4).
    17. Liu, X.-j., Fan, J.-y., Yu, J., & Gao, X. (2021). Solidification of loess using microbial induced carbonate precipitation. Journal of Mountain Science, 18(1), 265-274.
    18. Martinez, B., DeJong, J., Ginn, T., Montoya, B., Barkouki, T., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598.
    19. Mitchell, J. K. and Santamarian, C. J., “Biological considerations in geotechnical engineering,” Journal of Geotechnical and Geoenvironmental Engineering, 2005, pp. 1222-1233.
    20. Mujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524-537.
    21. Mortensen, B.M., Haber, M.J., DeJong, J.T., Caslake, L.F., Nelson, D.C., 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” Journal of Applied Microbiology 111, 338-349.
    22. Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., & Wang, G. (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1, 277-288
    23. Omoregie, A. I., Muda, K., Ong, D. E. L., Ojuri, O. O., Bakri, M. K. B., Rahman, M. R., Basri, H. F., & Ling, Y. E. (2023). Soil bio-cementation treatment strategies: state-of-the-art review. Geotechnical Research, 1-25.
    24. Nemati, M., & Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and microbial technology, 33(5), 635-642.
    25. Ning-Jun Jiang, Kenichi Soga, 2019,”Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP)”,Soils and Foundations,Volume 59, Issue 3,Pages 699-709.
    26. Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49-55.
    27. Sharma, A., & Ramkrishnan, R. (2016). Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspectives in Science, 8, 198-202.
    28. Sugimoto Daisuke and Kuwano Reiko,“Trial Test and Evaluation of Microbially Induced Cementation in Sand,”生產研究速報 (日本),61卷4號,2009, pp. 682-685
    29. Teng, F., Ouedraogo, C., & Sie, Y.-C. (2020). Strength improvement of a silty clay with microbiologically induced process and coir fiber. Journal of GeoEngineering, 15(2), 79-88.
    30. Tohari, A., Nishigaki, M., & Komatsu, M. (2007). Laboratory rainfall-induced slope failure with moisture content measurement. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 575-587.
    31. van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728.
    32. Wang, Z., Li, Q., Zhang, N., Jin, Y., Qin, H., & Ding, J. (2020). Slope failure of biotreated sand embankments under rainfall conditions: Experimental investigation and numerical simulation. Bulletin of Engineering Geology and the Environment, 79, 4683-4699.
    33. Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N., & Shen, D. (2017). Review of ground improvement using microbial induced carbonate precipitation (MICP). Marine Georesources & Geotechnology, 35(8), 1135-1146.
    34. Wu, C., Chu, J., Wu, S., Cheng, L., & van Paassen, L. A. (2019). Microbially induced calcite precipitation along a circular flow channel under a constant flow condition. Acta Geotechnica, 14, 673-683.
    35. Yi, H., Zheng, T., Jia, Z., Su, T., & Wang, C. (2021). Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria. Journal of Crystal Growth, 564, 126113.
    36. Zhang, G., Wang, R., Qian, J., Zhang, J.-M., & Qian, J. (2012). Effect study of cracks on behavior of soil slope under rainfall conditions. Soils and Foundations, 52(4), 634-643.
    37. Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), 04014094.
    38. 吳宜昭, 龔楚媖, 王安翔, 于宜強(2016) , 台灣地區短延時強降雨事件氣候特性分析 , 國家災害防救科技中心 災害防救電子報 , 第132期
    39. 巫書帆(2023) , 以大型模型試驗探討MICP減緩降雨引致淺層崩塌之應用 , 碩士論文 , 國立臺灣科技大學。
    40. 卓雨璇, 黃燦輝, 陳立憲(2011) , “微生物式之碳酸鈣膠結效應對粒狀土壤地質改良之研探” , 台灣岩土工程研究第十四屆會議
    41. 林美聆, 陳天健, 王國隆(2012) , “淺層崩塌防災管理規劃與研究” , 經濟部中央地質調查所 , 計畫編號:SWCB-106-199
    42. 林宸瑋(2021) , 以縮尺模型探討 MICP 於邊坡崩坍整治之應用 , 碩士論文 , 國立臺灣科技大學。
    43. 陳信洲(2005) , 邊坡破壞潛勢分析-以阿里山台18線公路為例 , 碩士論文 , 國立成功大學。
    44. 詹勳全, 張嘉琪, 陳樹群, 魏郁軒, 王昭堡, 李桃生 (2015) , “台灣山區淺層崩塌地特性調查與分析” , 中華水土保持學報 , 46(1): 19-28。
    45. 蕭江碧, 廖洪鈞等 (2004) , “地盤改良技術規範” , 內政部建築研究所協同研究報告。
    46. 賴明煌 (2013) , “阿里山公路面對519 豪雨事件之精進概述” , 臺灣公路工程第39卷 第7期,pp.2-46.。
    47. 閻葆瑞, 張勝, 張錫根(1994) , “太平洋中部水-岩系統中微生物活動及其成礦作用” , 地質出版社。
    48. 魏可兒 ( 2019) , “Microbial Induced Calcite Precipitation (MICP) on Taipei Silty Clay” , 國立臺灣科技大學 , 碩士論文。

    QR CODE