簡易檢索 / 詳目顯示

研究生: 李建緯
Jian-Wei Lee
論文名稱: 4H-SiC缺陷分析及其與蕭特基二極體電性之關聯性
4H-SiC Defect Analysis and Its Correlation with Schottky Diode Electrical Properties
指導教授: 洪儒生
Lu- Sheng Hong
口試委員: 黃智方
Chih-Fang Huang
李坤彥
Kung-Yen Lee
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 93
中文關鍵詞: 碳化矽氫氧化鉀蝕刻差排缺陷蕭特基二極體穿隧通道距離
外文關鍵詞: silicon carbide, potassium hydroxide etching, dislocation defect, Schottky diode, tunneling distance
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對碳化矽磊晶層中存在之缺陷進行表徵及生長機制的探討,並透過製作不同尺寸大小之蕭特基二極體,藉由元件電性量測後再對其進行缺陷的反向工程分析,微觀探討元件磊晶層中各種型態缺陷對元件特性之影響,並歸納其相關性,最終以建立碳化矽晶片缺陷標準化評估模式為目標。
    首先建立各種分析手法來表徵不同類型的碳化矽缺陷,包括以500℃熔融氫氧化鉀蝕刻試片3分鐘後可明辨出磊晶層表面的貫穿螺旋差排(TSD)、貫穿刃差排(TED)和極少數之基底面差排缺陷;以陰極發光光譜辨識出發光波長在500 nm的堆積缺陷;另外使用微分干涉顯微鏡輔以拉曼光譜儀觀測到磊晶層表面之三角形缺陷可能是由磊晶過程中氣相混入的立方晶碳化矽成核點處沿著磊晶方向之異常成長所造成。
    其次在製作成蕭特基二極體(SBDs)的實驗發現,在固定逆向偏壓為200 V作用下,隨著TSD與TED缺陷密度總和由1600 cm-2增大到4800 cm-2時,二極體的漏電流從3.4×10-7 A/cm2增加到1×10-6 A/cm2,此時量測到的元件蕭基能障由1.62 eV至1.28 V的下降呼應此一漏電流的上升。此外又發現,二極體的崩潰電壓與TSD密度大小並無相關連,但隨TED密度由1600 cm-2增大至4600 cm-2時明顯地從280 V下降至100 V。我們推測這與TED缺陷結構具有比TSD較短的穿隧通道距離有關。


    In this study, reverse engineering analysis of the crystal defects in the active layer of 4H-SiC Schottky diode after electrical behavior measurement was performed to explore the effects of various types of defects on the device.
    First of all, we established various analytical methods to characterize various types of SiC defects. Molten potassium hydroxide technique was used to etch the sample at 500℃ for 3 min to distinguish structural defects like threading screw dislocation (TSD), threading edge dislocation (TED), and basal plane dislocation. Cathodoluminescence spectroscopy was used to identify stacking fault which emits light at wavelength of 500 nm. In addition, through differential interference optical microscopy together with Raman spectroscopy, the formation of triangular defects on the wafer surface is most plausibly attributable to the 3C inclusion during epitaxial growth.
    Secondly, at a fixed reverse bias of 200V, the leakage current of the 4H-SiC Schottky diode increased from 3.4×10-7 A/cm2 to 1×10-6 A/cm2 as the total defect density of TSD and TED increased from 1600 cm-2 to 4800 cm-2, while the measured Schottky barrier, reducing from 1.62 eV to 1.28 eV, is responsive to the increasing of this leakage current. Moreover, in contrary to the irreverence of the breakdown voltage with respect to TSD density, the breakdown voltage dropped significantly from 280 V to 100 V with increasing TED density from 1600 cm-2 to 4600 cm-2. Shorter tunneling distance of TED than TSD for the carriers to penetrate through the active layer of the diode may be explainable to these phenomena.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機和方向 第二章 文獻回顧 2.1 碳化矽結構 2.2 碳化矽材料特性 2.2.1 寬能隙、低本質載子濃度和高崩潰電場 2.2.2 電子飽和速度 2.2.3 熱傳導率 2.2.4 光學性質、機械性質 2.3 碳化矽元件特性 2.4 碳化矽蕭特基二極體(Schottky diode, SBD) 2.4.1 金屬-半導體接面 2.4.2 順向偏壓與逆向偏壓特性 2.5 碳化矽缺陷類型 2.5.1 碳化矽晶體結構缺陷 2.5.2 表面形貌缺陷 2.6 碳化矽晶圓的缺陷與元件特性之相關性 第三章 實驗設備材料相關 3.1 實驗流程大綱 3.2 碳化矽基板清洗流程 3.3 碳化矽蕭特基二極體製作流程 3.4 實驗材料 3.5 實驗設備 3.5.1 熱電偶 3.5.2 升降裝置 3.5.3 坩鍋、載台與高溫爐防腐蝕 3.6 分析儀器 3.6.1 微分干涉金相顯微鏡(Normarski Optical Microscope, DIC) 3.6.2 顯微拉曼散射光譜儀(Micro Raman Scattering Spectroscope, μ-Raman) 3.6.3 原子力顯微鏡(Atomic Force Microscope, AFM) 3.6.4 陰極發光光譜儀(cathodoluminescence, CL) 3.6.5 場發射雙束型聚焦離子束顯微鏡(Dual Beam Focused Ion Beam, FIB) 3.6.6 電壓電流量測(I-V measure) 第四章 結果與討論 4.1 蕭特基二極體電壓電流量測 4.2 碳化矽缺陷觀察與生長機制探討 4.3 碳化矽缺陷與蕭特基二極體電性之關聯性 4.3.1 漏電流、崩潰電壓及理想因子與差排缺陷之關係 第五章 總結論 第六章 參考文獻

    [1] M. Rosina, “GaN and SiC power device : market overview Remaining challenges,” Semicon Eur., 2018.
    [2] K. Shibahara, N. Kuroda, S. Nishino, and H. Matsunami, “Fabrication of P-N Junction diodes using homoepitaxially grown 6H-SiC at low temperature by chemical vapor deposition,” Jpn. J. Appl. Phys.,26, no. 11 A, pp. L1815–L1817, 1987.
    [3] R. A. Berechman, M. Skowronski, S. Soloviev, and P. Sandvik, “Electrical characterization of 4H-SiC avalanche photodiodes containing threading edge and screw dislocations,” J. Appl. Phys., 107, 11540, 2010.
    [4] A.Grekov, Q.Zhang, H. Fatima, A. Agarwal, and T. Sudarshan, “Effect of crystallographic defects on the reverse performance of 4H-SiC JBS diodes,” Microelectron. Reliab., 48, no. 10, pp. 1664–1668, 2008.
    [5] Q. Wahab, A. Ellision, A. Henry and E. Janzen, “Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes,” Cit. Appl. Phys. Lett, 76, p. 2725, 2000.
    [6] H. Matsuhata, N. Sugiyama, B. Chen, T. Yamashita, T. Hatakeyama, and T.Sekiguchi, “Surface defects generated by intrinsic origins on 4H-SiC epitaxial-wafers observed by scanning electron microscopy,” Microscopy, 66, no. 2, pp. 103–109, 2017.
    [7] J. D. Callister William and D. G. Rethwisch, Fundamentals of Materials Science and Engineering. 2009.
    [8] T. Kimoto and J. A.Cooper, Fundamentals of Silicon Carbide Technology, 252, no. 1120. 2014.
    [9] H. Matsunami, “Technological breakthroughs in growth control of silicon carbide for high power electronic devices,” Jpn. J. Appl. Phy, 43, no. 10, pp. 6835–6847, 2004.
    [10] J. L. Hudgins, G. S. Simin, E. Santi, and M. A.Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron., 18, no. 3, pp. 907–914, 2003.
    [11] K. J. Schoen, J. M. Woodall, J. A. Cooper, and M. R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Trans. Electron Devices, 45, no. 7, pp. 1595–1604, 1998.
    [12] S. Adachi, Properties of Group-I-V , III – V and II – VI Semiconductors Wiley Series in Materials for Electronic and Optoelectronic, 2005.
    [13] T. Kimoto, “Material science and device physics in SiC technology for high-voltage power devices,” Jpn. J. Appl. Phys., 54, no. 4, p. 040103, 2015.
    [14] S. J. Pearton, Y. Jiancheng, H. C. Patrick, F. Ren, K. Jihyun, J. T. Marko and A. M. Michael “A review of Ga2O3 materials, processing, Appl. Phys., 51, no. 10, pp. 11301–13504, 2018.
    [15] R. E. Jones and A. M. Toxen, “Thermal conductI-Vity of pure indiμm,” Phys. Rev., 120, no. 4, pp. 1167–1170, 1960.
    [16] B. Jayant Baliga, Fundamentals of Power Semiconductor Devices. 2008.
    [17] J. H. Park and P. H. Holloway, “Effects of nickel and titaniμm thickness on nickel/titaniμm ohmic contacts to n-type silicon carbide,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 23, no. 2, pp. 486–494, 2005.
    [18] S. M. Sze and Kwok K. Ng, PHYSIS OF SEMICONDUCTOR DEVICE, 2007.
    [19] H. M. Akira Itoh, Tsunenobu Kimoto, “High Performance of High-Voltage,” IEEE Electron Device Lett., 16, no. 6, pp. 280–282, 1995.
    [20] A.V. Kuchuk, P.Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak “Ni-Based Ohmic Contacts to n -Type 4H-SiC: The Formation Mechanism and Thermal Stability,” Adv. Condens. Matter Phys., 2016.
    [21] K. Y. Lee and M. A. Capano, “The correlation of surface defects and reverse breakdown of 4H-SiC Schottky barrier diodes,” J. Electron. Mater., 36, no. 4, pp. 272–276, 2007.
    [22] T. Katsuno, Y. Watanabe, H. Fujiwara, M. Konishi, T. Yamamoto, and T.Endo, “Effects of surface and crystalline defects on reverse characteristics of 4H-SiC junction barrier schottky diodes,” Jpn. J. Appl. Phys., vol. 50, no. 4, 2011.
    [23] R. A. Berechman, M. Skowronski, and Q.Zhang, “Electrical and structural investigation of triangular defects in 4H-SiC junction barrier Schottky devices,” J. Appl. Phys., 105, no. 7, 2009.
    [24] T. Kimoto, N. Miyamoto, and H. Matsunami, “Performance limiting surface defects in SiC epitaxial p-n junction diodes,” IEEE Trans. Electron Devices, 46, no. 3, pp. 471–477, 1999.
    [25] W. Huang, M. Dudley, and C. Fazi, “Characterization of defect structures in 3C-SiC single crystals using synchrotron white beam X-ray topography,” Mater. Res. Soc. Symp. - Proc., 423, pp. 545–550, 1996.
    [26] I. Sunagawa and P. Bennema, “Observations of the influence of stress fields on the shape of growth and dissolution spirals,” J. Cryst. Growth, 53, no. 3, pp. 490–504, 1981.
    [27] F. C. Frank, “Capillary equilibria of dislocated crystals,” Acta Crystallogr., 4, no. 6, pp. 497–501, 1951.
    [28] M. Nakabayashi T. Fujimoto, M. Katsuno, N. Ohtani, H. Tsuge, H. Yashiro and K. Tatsumi, “Growth of crack-free 100mm-diameter 4H-SiC crystals with low micropipe densities,” Mater. Sci. Forμm, 600–603, pp. 3–6, 2009.
    [29] R. T. Leonard, Y. Khlebnikov, A. R. Powell, C. Basceri, M. F. Brady and C. H. Carter, “100 mm 4HN-SiC wafers with zero micropipe density,” Mater. Sci. Forμm, 600–603, pp. 7–10, 2009.
    [30] C.Basceri I. Khlebnikov, Y. Khlebnikov, P. Muzykov and C. Balkas, “Growth of micropipe-free single crystal Silicon Carbide (SiC) Ingots via Physical Vapor Transport (PVT),” Mater. Sci. Forμm, 527–529, no. PART 1, pp. 39–42, 2006.
    [31] S. Amelinckx, G. Strμmane, and W. W. Webb, “Dislocations in silicon carbide,” J. Appl. Phys., 31, no. 8, pp. 1359–1370, 1960.
    [32] V. J. Jennings, the Etching of Silicon Carbide, 4, 1969.
    [33] M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro and M. Kanaya, “Mechanism of molten KOH etching of SiC single crystals: ComparatI-Ve study with thermal oxidation,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 38, no. 8 B, pp. 4661–4665, 1999.
    [34] D. Hull and D. J. Bacon, “Movement of Dislocations,” Introd. to Dislocations, pp. 43–62, 2011.
    [35] S. Mahajan, M. V. Rokade, S. T. Ali, K. Srinivasa Rao, N. R. Munirathnam, T. L. Prakash , “Investigation of micropipe and defects in molten KOH etching of 6H n-silicon carbide (SiC) single crystal,” Mater. Lett., 101, pp. 72–75, 2013.
    [36] H. Tsuchida, I. Kamata, and M. Nagano, “Investigation of defect formation in 4H-SiC epitaxial growth by X-ray topography and defect selectI-Ve etching,” J. Cryst. Growth, 306, no. 2, pp. 254–261, 2007.
    [37] M.Benamara, X. Zhang, M. Skowronski, P. Ruterana, G. Nouet, J. J. Sumakeris, M. J. Paisley and M. J. O'Loughlin, “Structure of the carrot defect in 4H-SiC epitaxial layers,” Appl. Phys. Lett., 86, no. 2, p. 021905, Jan.2005.
    [38] H. Matsuhata, N. Sugiyama, B. Chen, T. Yamashita, T. Hatakeyama, and T.Sekiguchi, “Surface defects generated by extrinsic origins on 4H-SiC epitaxial-wafers observed by scanning electron microscopy,” Microscopy, 66, no. 2, pp. 103–109, 2017.
    [39] H. Matsunami and T. Kimoto, “Step-controlled epitaxy of SiC: High-quality homoepitaxial growth,” Diam. Relat. Mater., 7, no. 2–5, pp. 342–347, 1998.
    [40] M.Yazdanfar et al., “Process stability and morphology optimization of very thick 4H-SiC epitaxial layers grown by chloride-based CVD,” J. Cryst. Growth, 380, pp. 55–60, 2013.
    [41] M. Yazdanfar, H. Pedersen, O. Kordina, and E. Janzén, “Effect of process parameters on dislocation density in thick 4H-SiC epitaxial layers grown by chloride-based CVD on 4°off-axis substrates,” Mater. Sci. Forμm, 778–780, pp. 159–162, 2014.
    [42] A. ShrI-Vastava, P. Muzykov, B. Pearman, S. M. Angel, and T. S. Sudarshan, “Investigation of triangular defects in 4H-SiC 4° off cut (0001) Si face epilayers grown by CVD,” Mater. Sci. Forμm, 600–603, pp. 139–142, 2009.
    [43] Y.Li et al., “Reduction of morphological defects in 4H-SiC epitaxial layers,” J. Cryst. Growth, 506, no. October 2018.
    [44] M. Yazdanfar, I. G. I-Vanov, H. Pedersen, O. Kordina, and E. Janzén, “Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates,” J. Appl. Phys., 113, no. 22, 2013.
    [45] T. Kimoto et al., “Understanding and reduction of degradation phenomena in SiC power devices,” IEEE Int. Reliab. Phys. Symp. Proc., pp. 2A1.1-2A1.7, 2017.
    [46] H. Fujiwara et al., “Impact of surface morphology above threading dislocations on leakage current in 4H-SiC diodes,” Appl. Phys. Lett., 101, no. 4, pp. 1–5, 2012.
    [47] K. Kamei, L. Guo, K. Momose, and H. Osawa, “Structure of straight-line defect and its effect on the electrical properties of Schottky barrier diodes,” 858, pp. 213–216, 2016.
    [48] T. Katsuno, Y. Watanabe, H. Fujiwara, M. Konishi, T. Yamamoto, and T. Endo, “Effects of surface and crystalline defects on reverse characteristics of 4H-SiC junction barrier schottky diodes,” Jpn. J. Appl. Phys., 50, no. 4 PART 2, 2011.
    [49] Q. Wahab et al., “Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes,” Appl. Phys. Lett., 76, no. 19, pp. 2725–2727, 2000.
    [50] S. Hayashi et al., “Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p – i – n diodes,” 2018.
    [51] M. Wiets, M. Weinelt, and T. Fauster, “Electronic structure of SiC(0001) surfaces studied by two-photon photoemission,” Phys. Rev. B - Condens. Matter Mater. Phys., 68, no. 12, pp. 1–11, 2003.
    [52] Y. X. Cui, X. B. Hu, X. J. Xie and X. G. Xu, “Threading dislocation classification for 4H-SiC substrate using KOH etching method,” CrysEngComm, 20, pp. 978-982, 2018.

    [53] S. Chung, R. A. Berechman, M. R. McCartney, and M. Skowronski, “Electronic structure analysis of threading screw dislocations in 4H-SiC using electron holography,” J. Appl. Phys., 109, no. 3, 2011.
    [54] J. Łażewski et al., “DFT modelling of the edge dislocation in 4H-SiC,” J. Mater. Sci., 54, no. 15, pp. 10737–10745, 2019.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 2025/08/24 (校外網路)
    全文公開日期 2025/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE