簡易檢索 / 詳目顯示

研究生: THI TRAN ANH TUAN
THI - TRAN ANH TUAN
論文名稱: Electrical characterizations of diodes fabricated on GaN and InGaN films by RF magnetron sputtering
Electrical characterizations of diodes fabricated on GaN and InGaN films by RF magnetron sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: Jian-Jang Huang
Jian-Jang Huang
Cheng-Yen Wen
Cheng-Yen Wen
何清華
Ching-Hwa Ho
王秋燕
Chiu-Yen Wang
柯文政
Wen-Cheng Ke
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 190
外文關鍵詞: MS Schottky diode, MOS Schottky diode, p–n junction diode, I–V measurement, C–V measurement, Cheungs’ method, Norde method, SBHs, ideality factor.
相關次數: 點閱:299下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • High thermal conductivity, high electron mobility, high electron saturation velocity, and large band gap of nitride based materials have attracted many research interests in recent years. The GaN and InGaN materials have brought promising future for the application of electronic devices such as metal–oxide–semiconductor field effect transistors (MOSFETs), hetero junction field-effect transistors (HJ-FETs), Schottky diodes, p–n junction diodes, laser diodes, light emitting diodes (LEDs) etc. However, high-quality GaN, InGaN films and III-V nitride semiconductors for optoelectronic and electronic devices often have been grown on sapphire and several other semiconductor substrates by using metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) above 800 oC. The developments of III-V nitride materials and their devices made by using low-cost methods at low processing temperatures are very important in fabricating electronic devices.
    In this study, all diodes based on GaN and InGaN materials will be made at the low temperature with the cost-effective and reactive radio-frequency (RF) sputtering technique. The GaN and its alloy films were characterized by FE-SEM, EDS, XRD, TEM, AFM and Hall measurement at the room temperature. The electrical characterizations of diodes were determined by I–V and C–V measurements. The characteristics of our diodes can be successfully explained with the thermionic-emission (TE) model. Cheungs' and Norde methods were used to determine all electrical parameters of Schottky and p–n junction diodes.
    For the diode devices based on n–GaN and n–InGaN, the 500 oC-annealed n–GaN MS (metal–semiconductor) and MOS (metal–oxide–semiconductor) Schottky diodes showed the smallest leakage currents of 1.02�e10-8 and 1.86�e10-9 A, respectively, at -1V. The highest SBHs for n–GaN MS and MOS Schottky diodes were calculated to be 0.79 and 0.81 eV, respectively, by the Cheungs’ method, and 0.91 and 0.94 eV by the Norde method. The n–GaN MOS diode showed a high series resistance of 84.4 k��, as compared to 27.9 k�� for the n–GaN MS diode. In addition, n–InGaN MS and MOS Schottky diodes were studied before and after annealing at 400 oC. The 400 oC-annealed samples displayed the leakage current of 3.86�e10-6 (MS) and 1.42�e10-7 A (MOS). The SBH of n–InGaN MOS diode increased from 0.69 eV (I–V), 0.77 eV (Norde) to 0.82 eV (C–V) after annealing at 400 oC. By C–V measurement for n–InGaN MOS diode, the carrier concentration was found to be 4.48�e1017 cm-3 for the as-deposited and 2.41�e1017 cm-3 for the annealed samples. The n–InGaN MOS diode had a small series resistance of 911 ��, as compared to 84.4 k�� for the n–GaN MOS diode.
    For the homo junction diodes, four different diodes based on n– and p–GaN, InGaN, and AlInGaN materials were made by reactive RF sputtering technique. All homo junction diodes were designed with the electrode configuration of the top–bottom mode on Pt/TiO2/Si(100) substrates. They can be presented as n�{GaN/p�{GaN (Mg-doped-GaN), n–GaN/p�{InGaN (Mg-doped In0.05Ga0.95N), n–InGaN/p–GaN (Mg-doped GaN), and n–AlInGaN/p–GaN diodes. Among of them, the good performance had been showed in the n–InGaN/p–GaN diode. The variations of electrical properties of this diode with the wide bias range of [-20; 20] V were measured at 25-150 oC. The diode tested at 25 oC showed the turn-on voltage of 2.1 V, the leakage currents of 4.7�e10-7 A at -5 V and 1.04�e10-5 A at -20 V, the breakdown voltage above ~20 V, the barrier height of 0.60 eV, and the ideality factor of 5.9. By increasing the testing temperature, the barrier height increased from 0.60 eV (I–V) and 0.69 eV (Norde) at 25 oC to 0.73 eV and 0.85 eV at 150 oC, respectively. The series resistance decreased from 1925 Ω (25 oC) to 131 Ω (150 oC). For the ideality factor, it decreased from 5.9 to 4.8 by the I–V tests and from 6.4 to 5.1 by the Cheungs’ method.
    For studying the hetero junction diodes, all diodes based on GaN, InGaN, and Si wafer were made by using RF sputtering technique. All hetero junction diodes were designed on n�{ and p�{Si wafers by the electrode configuration of the top-top mode. They can be listed as n–InxGa1-xN/p–Si (x = 0, 0.15, and 0.4), Mg-doped p–InxGa1-xN/n–Si (with x = 0 and 0.05), and Zn-doped p–GaN/n–Si diode. The best diode was the Zn-doped p–GaN/n–Si, which were made to confirm the strong p�{type behavior by Zn doping. The lowest leakage current of ~1.65�e10-9 A at -5 V and the breakdown voltage above 20 V were found at 25 oC. The series resistance Rs and ideality factor decreased from 539 Ω to 234 Ω and 6.5 to 4.2, respectively, with testing temperature changed from 25 to 125 oC. The barrier height increased from 0.64 eV at 25 oC to 0.77 eV at 150 oC.

    Abstracti Acknowledgementiv Table of contentsvi List of Tablesix List of Figuresxi List of Equationsxix 1. Introduction1 1.1 Background of study1 1.2 Technology for development GaN materials and devices3 1.2.1 Substrate growth for GaN and electric devices3 1.2.2 Method growth for GaN and electric devices4 1.3 Motivation and objectives of this study7 2. The basic theory and Literature review10 2.1 The basic theory of electric devices10 2.1.1 Metal–Semiconductor (MS) contact10 2.1.2 Metal−Insulator−Semiconductor (MIS) contact15 2.1.3 p−n junction19 2.1.4 Calculation modes.23 2.1.5 Current–Voltage (I–V) measurement26 2.1.6 Capacitor –Voltage (C–V ) measurement30 2.2 Literature Review34 2.2.1 Growth for GaN and its alloys34 2.2.2 MS and MOS Schottky diodes38 2.2.3 p–n junction diodes41 3. Experiment Apparatus and Procedure44 3.1 Description of experimental instruments44 3.1.1 Chemical vapor deposition (CVD) machine44 3.1.2 Vacuum hot pressing machine44 3.1.3 RF magnetron sputtering46 3.2 Material characterization techniques48 3.2.1 X-Ray Diffraction (XRD)48 3.2.2 Hall effect measurement51 3.2.3 Field emission of scanning electron microscope (FE-SEM)53 3.2.4 Atomic Force Microcopy (AFM)56 3.2.5 Transmission electron microcopy (TEM)59 3.2.6 Semiconductor Device Analyzer (I–V and C–V measurement)61 4. Results and Discussions63 4.1 MS and MOS Schottky diodes63 4.1.1 n–GaN MS and MOS Schottky diodes63 4.1.2 n–InGaN MS and MOS Schottky diodes74 4.2 Homo junction diodes86 4.2.1 n�{GaN/p�{GaN homo junction diode86 4.2.2 n�{GaN/p�{InGaN homo junction diode95 4.2.3 n–InGaN/p–GaN homo junction diode104 4.2.4 n–AlInGaN/p–GaN junction diode110 4.2.5 Comparison between n–InGaN/p–GaN and n–AlInGaN/p–GaN homo junction diodes116 4.3 Hetero junction diodes118 4.3.1 The comparison of n–InxGa1-xN/p–Si hetero junction diode118 4.3.2 Comparison between p–GaN/n–Si and p–InGaN/n–Si junctiondiodes130 4.3.3 p–Zn-GaN/n–Si hetero junction diode137 5. Conclusions and Future works144 5.1 Conclusions144 5.2 Future works148 6. References150 7. Curriculum Vitae165

    1. Alfred Corbin, The Third Element: A Brief History of Electronics, Author House, ISBN-10: 1420890840, (2006).
    2.K. W.Cheah, History of Integrated. Baptist University Hong Kong,(2002).
    3. D.L. Eggleston, Basic Electronics for Scientists and Engineers. United States of America by Cambridge University Press, New York, ISBN 978-0-521-76970-9, (2011).
    4. Hadis Morkoc, Handbook of Nitride Semiconductors and Devices. Vol 2, Wiley-Vch Verlag GmbH & Co. KGaA,Weinheim , ISBN: 978-3-527-40838-2, (2008).
    5. Y. Nakamura, S. Katogi, Technology Trends and Future History of Semiconductor Packaging Substrate Material History semiconductor. Hitachi Chemical Technical, 55 (2013).
    6. L. Lukasiak, A. Jakubowski, History semiconductor. Journal of Telecomunication and Information Technology, 6 (2010), 1-9.
    7. S. M. Sze, K.K. Ng, Physics of Semiconductor Devices, A John Wiley & Sons, Jnc, USA, ISBN-13: 978-0-471-14323-9, (2007).
    8. L.M. Porter, K. Das, Y. Dong, J.H. Melby, A. R. Virshup, Wide-Band-Gap Semiconductors, Journal of Applied Physics, 86 (2011), 44-85.
    9. T. Kiuru, Characterization, modeling and design Schottky diodes. Aalto University, USA, ISBN 978-952-60-4408-8, (2011).
    10. R.K. Wong, p-type Cu-doped GaN. University of California, Berkeley, USA, (2000).
    11. D.K. Schroder, Semiconductor Material and Device Characterization (3rd edition), A John Wiley & Sons, INC, USA, ISBN-13: 978-0-471-73906-7, (2006).
    12. S. Nakamura, M.R. Krames, History of Gallium Nitride Based Light Emitting Diodes for Illumination. IEEE, (2013), 0018-9219.
    13. Rudiger Quay, Gallium Nitride Electronics. Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-71890-1, (2008).
    14. S.P. DenBaars, Galium Nitrte Materials Technology (Chapter 3). (1998), 23-34.
    15. D.K. Wickenden, Z. Huang, D.B. Mott, P.K. Shu, Development of Gallium Nitride Photoconductive Dectctors. Johns Hopkins Apl Technical Digest, 18 (1997), 217-224.
    16. S. Nakaruma, GaN Growth Using GaN Buffer Layer. Japanese Journal of Applied Physics, 30 (1991), 1705-1707.
    17. S.W. Chung, W.J. Hwang, C.C. Lee, M.W. Shin, The thermal effect of GaN Schottky diode on its I–V characteristics. Journal of Crystal Growth, 268 (2004), 607–611.
    18. R.D. Underwood, Indium Galium Nitrite/ Galium Nitrite Vaccum Morcoelectronic Cold cathodes: pielectronic Surface Barrier lowering. University of Carlifonia, (1999).
    19. J. Zhu, X. Li, C. Yang, R. Lu, J. Wang, P. Guo, Development and characterization semiconductor materials by ion beams. IAEA, Vienna, Autria, ISSN 1011-4289, (2002).
    20. H. Shinoda, N. Mutsukura, Structural properties of GaN and related alloys grown by radio-frequency magnetron sputter epitaxy. Thin Solid Films, 516 (2008), 2837-2842.
    21. S. Aslama, R.E. Vestc, D. Franza, F. Yan,Y. Zhaod, B. Mott, External quantum efficiency of Pt/n-GaN Schottky diodes in the spectral range 5–500nm. Nuclear Instruments and Methods in Physics Research A, 539 (2005), 84–9222.
    22. Stephen Pearton, GaN and ZnO-based Materials and Devices. Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-23520-7, (2012).
    23. R.D. Underwood, D. Kapolnek, P. Keller, S. Keller, S.P. Denbaars, U.K. Mishra, Selective-area regrowth of GaN field emission tips. Solid-State Electronics. 41(2) (1997), 243-245.
    24. I.M. Dharmadasaa, J.D. Bunninga, A.P. Samantillekea, T.S. Dharmadasa, Effects of multi-defects at metal/semiconductor interfaces on electrical properties and their influence on stability and lifetime of thin film solar cells. Solar Energy Materials and Solar Cells, 86 (3) (2005), 373-384.
    25. J.P. Colinge, C.A. Colinge, Physics of semiconductor devices. ISBN 1-40207-018-7 (2003).
    26. B. Van Zeghbroeck, Principles of Semiconductor Devices, www.colorado.edu/~bart/book/ (2002).
    27. M.L.P. Maasakkers, Characterisation of Ohmic contacts on n-InP and p-InGaAs based materials. Eindhoven University of Technology, Nertherlands, (2003).
    28. P. Dudek, R. Schmidt, M. Lukosius, G. Lupina, C. Wenger, K. Xu, A.D. Dudek, Basic investigation of HfO2 based metal–insulator–metal diodes. Thin Solid Films, 519 (17) (2011), 5796-5799.
    29. Q. Huang, J. Amatakuga, MOS Controlled Diode-A new power diode. Solid state electronic, 38(5) (1995), 997-980.
    30. R.J. Schwartz, R.C. Dockerty, H.W. Thompson, Capacitance voltage. measuement on n-type InAs MOS diode. Solid state electronic, 14 (1971), 115-124.
    31. T. Fujihira, Theory of Semiconductor Superjunction Devices. Japanese Journal of Applied Physics. 36 (1997), 6254-6262.
    32. H.K. Gummel, Hole-electron product of pn junctions. Solid-State Electronics.10(3) (1967), 209-212.
    33. Y. Koide, Depletion layer in pn-junction of diamond with phosphorus donor and boron acceptor. Diamond and Related Materials, 13 (2004), 1963-1966.
    34. A. Rubio-Ponce, D. Olguin, I. Hernandez-Calderon, Calculation of the effective masses of II-VI semiconductor compounds. Superficies y Vacio, 16(2) (2003), 26-28.
    35. M. Suzuki, T. Uenoyama, First-Principles Calculation of Effective Mass Parameters of Gallium Nitride. Japanese Journal of Applied Physics, 34 (1995), 3442-3446.
    36. C.R. Crowell, Richardson constant and tunneling effective mass for thermionic and thermionic-field emission in schottky barrier diodes. Solid-State Electronics, 12 (1969), 55-59.
    37. C.R. Crowell, The richardson constant for thermionic Emission in schottky barrier diodes. Solid-State Electronics, 8 (1965), 395-399.
    38. M. Jang, J.H. Lee, Analysis of Schottky Barrier Height in Small Contacts Using a Thermionic-Field Emission Model. ETRI Journal, 24 (2002), 445-461.
    39. R. Schifano, Schottky contacts and electrical characterization of n-type hydrothermally grown ZnO. University of Oslo, ISSN 1501-7710, (2009).
    40. N. Brutshcher, M. Hoheisel, Schottky diode with high Series Resistance - A simple Method determine barrier height. Solid-state Electronic, 31(1) (1988), 87-89.
    41. A. Modinos, Theory Of Thermionic Emission. Surface Science, 115 (1982), 469-500.
    42. S.D. Liang, L. Chen, Theories of field and thermionic electron emissions from carbon nanotubes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 28(2) (2010), 47-50.
    43. V. Aubry, F. Meyer, Schottky diodes with high series resistance- Limitations of forward I- V methods. Journal of Apply Physics, 76 (12) (1994).
    44. B. Roula, T.N. Bhata, M. Kumara, M.K. Rajpalkea, N.S. Roul, Barrier height inhomogeneities in InN/GaN heterostructure based Schottky junctions. Solid State Communications, 151 (20) (2011), 1420-1423.
    45. V.R. Reddy, B. P. Lakshmi, R. Padma, Electrical Properties of Rapidly Annealed Ir and Ir/Au Schottky Contacts on n-Type InGaN. Journal of Metallurgy, 5 (2012), 1-9.
    46. V.R. Reddy, P.K. Rao, Annealing temperature effect on electrical and structural properties of Cu/Au Schottky contacts to n-type GaN. Microelectronic Engineering, 85(2) (2008), 470-476.
    47. M. Daraee, M. Rastgoo, L. Lavasanpour, Study of electrical characteristic of surface barrier with high series Resistance. Advance Studies Theory Physics, 2 (2008), 957 - 964.
    48. R. Padma, B.P. Lakshmi, M.S. Reddy, V.R. Reddy, Electrical and structural properties of Ir/Ru Schottky rectifiers on n-type InGaN at different annealing temperatures. Superlattices and Microstructures, 56 (2013), 64-76.
    49. N.K. Reddy, V.R. Reddy, C.J. Choi, Influence ofrapid thermal annealing effect on electrical and structural properties of Pd/Ru Schottky contacts to n-type GaN. Materials Chemistry and Physics, 130(3) (2011), 1000-1006.
    50. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters, 49(2) (1986), 85-88.
    51. A. Kumar, S. Vinayak, R. Singh, Micro-structural and temperature dependent electrical characterization of Ni/GaN Schottky barrier diodes. Current Applied Physics, 13(6) (2013), 1137-1142.
    52. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7) (1979), 5052-5055.
    53. M.M. Ravinandan, P.K. Rao, V.R. Reddy, Temperature dependence of current-voltage (I-V)characteristics of Pt/Au Schottky contacts on n-type GaN. Journal of Optoelectronics and advanced materials, 10 (10) (2008), 2787 - 2792.
    54. T.T.A. Tuan, D.H. Kuo, C.C. Li, W.C. Yen, Schottky barrier characteristics of Pt contacts to all sputtering-made n-type GaN and MOS diodes. Journal of Materials Science: Materials in Electronics, 25(8) (2014), 3264-3269.
    55. T.T.A. Tuan, D.H. Kuo, Characteristics of RF reactive sputter-deposited Pt/SiO2/n-InGaN MOS Schottky diodes. Materials Science in Semiconductor Processing, 30 (2015), 314-320.
    56. I. Akasaki, H. Amano, Breakthroughs in Improving Crystal Quality of GaN. AAPPS Bulletin, 18 (2008).
    57. S. Bengi, M.M. Bulbu, Electrical and dielectric properties of Al/HfO2/p-Si MOS device at high temperatures. Current Applied Physics, 13(8) (2013), 1819-1825.
    58. K. Lin, H. Chen, C.C. Cheng, H.M. Chuang, C.T. Lua,W.C. Liu, Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode. Sensors and Actuators B: Chemical, 94(2) (2003), 145-151.
    59. R.K. Gupta, K. Ghosh, P.K. Kahol, Fabrication and characterization of NiO/ZnO p–n junctions by pulsed laser deposition. Physica E: Low-dimensional Systems and Nanostructures, 41(4) (2009), 617-620.
    60. B. Baris, Analysis of device parameters for Au/tin oxide/n-Si- metal–oxide–semiconductor (MOS) diodes. Physica B: Condensed Matter, 438 (2014), 65-69.
    61.K.M.V. Viet, High injection theories of the p-n junction in the charge neutrality approximation. Solid-State Electronics, 9 (1966), 185-201.
    62. H. Umezawa, N. Tokuda, M. Ogura, S.G. Ri, S. Shikata, Characterization of leakage current on diamond Schottky barrier diodes using thermionic-field emission modeling. Diamond and Related Materials, 15 (2006), 1949-1953
    63. J. Racko, A. Grmanova, J.B. Extended, Thermionic Emission-Diffusion Theory of charge transport through a Schottky diode. Solid-State Electronics, 39 (3) (1996), 391-397.
    64. B. Akkala, Z. Benamara, H. Abida, A. Talbi , B. Gruzzac, Electrical characterization of Au/n-GaN Schottky diodes. Materials Chemistry and Physics, 85 (1) (2004), 27-31.
    65. Z.X. Zhang, X.J. Pan, T.Wang, E.Q. Xie, L. Jia, Electrical properties of nanocrystalline GaN film prepared by magnetron sputtering. Journal of Alloys and Compounds, 467 (2009), 61-64.
    66. C.C. Li, D.H. Kuo, Effects of growth temperature on electrical and structural properties of sputtered GaN films with a cermet target. Journal of Materials Science: Materials in Electronics, 25 (2014), 1404-1409.
    67. D.H. Kuo, C.C. Li, Material and technology developments of the totally sputtering-made p/n GaN diodes for cost-effective power electronics. Journal of Materials Science: Materials in Electronics, 25 (2014), 1942-1948.
    68. K. Yohannes, D.H. Kuo, Growth of p-type Cu-doped GaN films with magnetron sputtering at and below 400°C. Materials Science in Semiconductor Processing, 29, (2015), 288-293.
    69. C. Lee, K.W. Seol, J. Mo. Yeon, D.K. Choi, H. K. Ahn, The effect of p-GaN-Mg layers on the turn-on voltage of p–n junction LEDs. Journal of Crystal Growth, 222(3) (2001), 459-464.
    70. W. Lee, J.H. Ryou, Mg-Nitride-Based Green Light-Emitting Diodes With Various p-Type Layers. Journal of Display Technology, 3(2) (2007), 126-132.
    71.G.C. Chi, C.H. Kou, J.K. Sheu, C.J. Pan, The doping process of p-type GaN films. Materials Science and Engineering, 75 (2000), 210-213.
    72. E. Arslan, H. Cakmaka, E. Ozbay, Forward tunneling current in Pt/p-InGaN and Pt/n-InGaN Schottky barriers in a wide temperature range. Microelectronic Engineering, 100 (2012), 51-56.
    73. J.S. Jang, D. Kim, T.Y. Seong, Schottky barrier characteristics of Pt contacts to n-type InGaN. Journal of Applied Physics, 99 (2006), 700-704.
    74. C.C. Li, D.H. Kuo, P.W. Hieh, Y.S. Hsoeh, Thick InxGa1−xN Films Prepared by Reactive Sputtering with Single Cermet Targets. Journal of Electronic Materials, 42(8) (2013), 2445-2449.
    75. T.T.A. Tuan, D.H. Kuo, C.C. Li, W.C. Yen, Electrical and structural properties of Mg-doped InxGa1−xN (x≤0.1) and p-InGaN/n-GaN junction diode made all by RF reactive sputtering. Materials Science and Engineering: B, 193 (2015), 13-19.
    76. D.H. Kuo, C.C. Li, T.T.A. Tuan, W.C. Yen, Effects of Mg Doping on the Performance of InGaN. Journal of Electronic Materials, 44(1) (2015), 210-216.
    77. C.C. Li, D.H. Kuo,Y.S. Huang, The effect of temperature on the growth and properties of green light-emitting In0.5Ga0.5N films prepared by reactive sputtering with single cermet target. Materials Science in Semiconductor Processing, 29 (2015),170-175.
    78. D. Qiao, L.S. Yu, S.S. Lau, J. M. Redwing, J. Y. Lin, Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction. Journal of Applied Physics, 87 (2) (2000), 801-806.
    79. P.C. Chang, C. L. Yu, Y. J. Chiu, C. H. Liu, S. J. Chang, Y. K. Su, R. W. Chuang, Ir/Pt Schottky contact oxidation for nitride-based Schottky barrier diodes. Physica status solidi, 4 (5) (2007), 1625-1628.
    80. J. Wang, D.G. Zhao,Y.P. Sun, L. H. Duan,Y.T. Wang, S.M. Zhang, H.Yang, S.Q. Zhou, M.F. Wu, Thermal annealing behaviour of Pt on n-GaN Schottky contacts. Journal of Physics D: Applied Physcics, 36 (2003), 1018-1022 .
    81. C.K. Ramesh, V.R. Reddy, C.J. Choi, Electrical characteristics of Molybdenum Schottky contacts on n-type GaN. Materials Science and Engineering: B, 112(1) (2004), 30-33.
    82. Z. Benamara, B. Akkal, A. Talbi, B. Gruzza, Electrical transport characteristics of Au/n-GaN Schottky diodes. Materials Science and Engineering: C, 26 (2006), 519-522.
    83. Y. Wang, S. Alur, Y. Sharma, F. Tong, R. Thapa, P. Gartland, T.I. Smith, C. Ahyi, J. Williams, M. Park, M. Johnson, T. Paskova, E.A. Preble, K. R Evans, Ultra-low leakage and high breakdown Schottky diodes fabricated on free-standing GaN substrate. Semiconductor Science and Technology, 26 (2) (2011), 022002.
    84. C.F. Chang, T.H. Tsai, H.I. Chen, K.W. Lin, T.P. Chen, L.Y. Chen, Y.C. Liu, W. C. Liu, Hydrogen sensing properties of a Pd/SiO2/AlGaN-based MOS diode. Electrochemistry Communications, 11(1) (2009), 65-67.
    85. T.H. Tsai, J.R. Huang, K.W. Lin, W.C. Hsua, H. I. Chen,W.C. Liu, Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode. Sensors and Actuators B: Chemical, 129 (1) (2008), 292-302.
    86. C.C. Cheng, Y.Y. Tsai, K.W. Lin, H.I. Chen, C.T. Luc, W.C. Liu, Hydrogen sensing characteristics of a Pt–oxide–Al0.3Ga0.7As MOS Schottky diode. Sensors and Actuators B: Chemical, 99(2) (2004), 425-430.
    87. R. Padma, B.P. Lakshmi, V.R. Reddy, Capacitance–frequency (C–f) and conductance–frequency (G–f) characteristics of Ir/n-InGaN Schottky diode as a function of temperature. Superlattices and Microstructures, 60 (2013), 358-369.
    88. S. Zeyrek, E. Acaroglu, S. Altindal, S. Birdo, M.M. Bulbul, The effect of series resistance and interface states on the frequency dependent C–V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Current Applied Physics, 13 (7) (2013), 1225-1230.
    89. S. Karadeniz, N. Tugluoglu, T. Serin, Substrate temperature dependence of series resistance in Al/SnO2/p-Si (111) Schottky diodes prepared by spray deposition method. Applied Surface Science, 233 (2004), 5-13.
    90. S. Tsevas, M. Vasilopoulou, D.N. Kouvatsos, T. Speliotis, D. Niarchos, Characteristics of MOS diodes fabricated using sputter-deposited W or Cu/W films. Microelectronic Engineering, 83 (2006), 1434-1437.
    91. Q. Zhang, V. Madangrali, T.S. Sudarshan, SiC Planar MOS Schottky diode. Solid State Electronics, 45 (2001), 1805-1809.
    92. X.A. Cao, J.A. Laroche, F. Ren, S.J. Peaton, J.A. Lothian, R.K. Singh, R.G. Wilson, H.J. Guo, S.J. Pennycook, Implanted p–n junction in GaN. Solid State Electron, 43 (1999), 1235-1238.
    93. S.G. Cho, D.U. Lee, S.W. Pak, T.U. Nahm, E.K. Kim, Fabrication of a n-ZnO/p-Si heterojunction diode by ultra-high vacuum magnetron sputtering. Thin Solid Films, 520(18) (2012), 5997-6000.
    94. Y.J. Liu, D.F. Guo, K.F. Chua, S.Y. Cheng, J.K. Liou, L.Y. Chen, T.H. Tsai, C.C. Huang,
    T.Y. Chen, C.S. Hsua, T.Y. Tsai, W.C. Liu, Improved current-spreading performance of an InGaN-based light-emitting diode with a clear p-GaN/n-GaN barrier junction. Displays, 32 (2011), 330-333.
    95. D.K. Hwang, S.H. Kang, J.H. Lim, E.J. Yang, J.Y. Oh, J.H. Yang, S.J. Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Applied Physics Letters, 86(22) (2005), 222101.
    96.Y.J. Chen, C. Tong, J. Yun, W.A. Anderson, Current transport in Al-diffused ZnO/Si heterostructures. Journal of Electronic Materials, 15 (2014), 321-326.
    97. R. Hickman, J.M.V. Hode, P.P. Chow, J.J. Kalaassen, A.M. Wonchark, C.J. Polley, D.J. King, F. Ren, C.R. Abernathy, S.J. Pearton, K.B. Jung, H. Cho, J.R.L. Chore, GaN PN junction issues and developments. Solid-State Electronics, 44(2) (2000), 377-381.
    98. Y.S. Park, C. M. Park, C. J. Park, H. Y. Cho, Seung Joo Lee, T. W. Kang, S. H. Lee, Jae-Eung Oh, Kyung-Hwa Yoo, M.S. Son, Electron trap level in a GaN nanorod p-n junction grown by molecular-beam epitaxy. Applied Physics Letters, 88 (19) (2006), 192104.
    99. S.Y. Lee, T.H. Kim, D.I. Suh, J.E. Park, J.H. Kim, C.J. Youn, B.K. Ahn, S.K. Lee, An electrical characterization of a hetero-junction nanowire (NW) PN diode (n-GaN NW/p-Si) formed by dielectrophoresis alignment. Physica E: Low-dimensional Systems and Nanostructures, 36(2) (2007), 194-198.
    100. N. Baydogan, O. Karacasu, H. Cimenoglu, Effect of annealing temperature on ZnO:Al/p-Si heterojunctions. Thin Solid Films, 520(17) (2012), 5790-5796.
    101. M.Z. Mohd Yusoff, Z. Hassan, N.M. Ahmed, H. A. Hassan, M.J. Abdullah, M. Rashid, pn-Junction photodiode based on GaN grown on Si (111) by plasma-assisted molecular beam epitaxy. Materials Science in Semiconductor Processing, 16(6) (2013), 1859-1864.
    102. Y. Shen, X. Chen, X. Yan, F.Yi, Z. Bai, X. Zheng, P. Lin,Y. Zhang, Low-voltage blue light emission from n-ZnO/p-GaN heterojunction formed by RF magnetron sputtering method. Current Applied Physics, 14(3) (2014), 345-348.
    103. J. Kirschbrown, RF/DC Magnetron Sputtering. www.directvacuum.com, (2007).
    104. Magnetron Sputtering Technology. www.micromagnetics.com, Micro Magnetic, (2011).
    105. B.D. Cullity, S.R. Stock, Element of X-ray Diffraction (Third Edition). Pearson Education International, ISBN 0-12-178818-3, (2001).
    106. K.A. Borup, E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, Measurement of the electrical resistivity and Hall coefficient at high temperatures. Review of Scientific instruments, 83(12) (2012), 123902.
    107. Hall Effect Measurement System, Bridge Technology Ecopia, (2008).
    108. B.G. Yacobi, Semiconductor Materials, an Introduction to Basic Principles. University of Toronto, Ontario, Canada, Kluwer Academic Publishers, ISBN:0-306-47942-7, (2004).
    109. J.M. Huggett, H. F. Shaw, Field emission scanning electron microscopy a high-resolution technique for the study of clay minerals in sediments. Clay Minerals, 32 (1997), 197-203.
    110. H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59 (2005), 1-152.
    111. C. Smith, D.K. Dewald, T.C. Lee, J.A. Eades, I.M. Robertson, H.K. Birnbaum Transmission Electron Microscope (TEM) Imaging Basics. Review of Scientific Instruments, 62 (1991), 1438-1476.
    112. Semiconductor Device Analyzer Agilent-B1500A, www.agilent.com, Published in USA, Agilent Tetchnology, 5989-2785EN, (2013).
    113. J.U. Schmidt, Synthesis of silicon nanocrystal memories by sputter deposition, Dresden Unversity of Tetchnology, German, (1971).
    114. A.R. Arehart, B. Moran, J.S. Speck, U.K. Mishra, S.P. DenBaars, Effect of threading dislocation density on Ni/n-GaN Schottky diode I-Vcharacteristics. Journal of Applied Physics, 100 (2006), 023709.
    115. C.Y. Hua, Z.B. Ding, Z.X. Qina, Z.Z. Chen, K.Xua, Y.J. Wanga, Z.J. Yanga, S.D. Yao, B. Shena, G.Y. ZhangaHu, Investigation on the different barrier effect of Ni and Pt in the Ti/Al/Pt/Au and Ti/Al/Ni/Au contacts to n-type GaN. Journal of Crystal Growth, 298 (2007), 804-807.
    116. J.S. Koziorowska, S. Grzanka, E.L. Staszewska, R. Piotrzkowski, G. Nowaka, M. Leszczynski, P. Perlin, E. Talik, J. Kozubowski, S. Krukowski, Ni–Au contacts to p-type GaN – Structure and properties. Solid-State Electronics, 54 (7) (2010), 701-709.
    117. R.L. Meirhaeghe, W.H. Laflere, F. Cardon, Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts. Journal of Apply Physics, 76 (1) (1994), 403-406.
    118. A. Kumar, M.C. Aman, R. Singh, Temperature dependence of electricalcharacteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation. Nanoscale Research Letters, 8 (2013), 481-488.
    119. K.P. Hsueh, Temperature dependent current–voltage characteristics of n-MgxZn1−xO/p-GaN junction diodes. Microelectronic Engineering, 88(6) (2011), 1016-1018.
    120. K.P. Hsueh, P.W. Cheng, W.Y. Lin, H.C. Chiu, H. C. Wang, J. K. Sheu, Y.H. Hsueh, Temperature-Dependent Current-Voltage Characteristics of Al-Doped MgxZn1-xO/AlGaN n-p Junction Diodes. ECS Journal of Solid State Science and Technology, 3(4) (2014), 65-68.
    121. G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M.A. Reed, G. Wang, D. Moses, J. Z. Cheng, Current rectification in a single GaN nanowire with a well-defined p–n junction. Applied Physics Letters, 83(8) (2003),1578-1581.
    122. R.K. Gupta, F.Yakuphanoglu, K. Ghosh, P.K. Kahol, Fabrication and characterization of p–n junctions based on ZnO and CuPc. Microelectronic Engineering, 88(10) (2011), 3067-3069.
    123. R. Padma, V.R. Reddy, Electrical properties of Ir/n-InGaN/Ti/Al Schottky barrier diode in a wide temperature range. Advance Materials Letters, 1(5) (2014), 31-38.
    124. A.J. Ghazai, A. Hassan, Z. Hassan, S. Hussein, Effects of thermal annealing of Pt Schottky contacts on quaternary n-Al0.08In0.08Ga0.84N thin film. Optoelectronics and advanced materials – rapid communication, 6 (2012), 324 - 326.
    125. I. Vurgaftmana, J. R. Meyer, Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89(1) (2001), 5815-5874.
    126. M.L. Lee, J.K. Sheu, L.S. Yeh, M.S. Tsai, C.J. Kao, C.J. Tun, G.C. Chi. S.J. Chang, GaN p–n junction diode formed by Si ion implantation into p-GaN. Solid-State Electronics, 46 (2002), 2179–2183.
    127. B.T. Tran, E.Y. Chang, K. L. Lin, Y.Y. Wong, K.C. Sahoo, H.Y. Lin, M.C. Huang, H.Q. Nguyen, C.T. Lee, H.D. Trinh, Growth of High-Quality In0.4Ga0.6N Film on Si Substrate by Metal Organic Chemical Vapor Deposition. Applied Physics Express, 4(11) (2011), 115501.
    128. J.W. Ho, L. Zhang, Q. Wee, A.A.O. Taye, M. Heuken, S.J. Chua, Structural and morphological qualities of InGaN grown via elevated pressures in MOCVD on AlN/Si(111) substrates. Journal of Crystal Growth, 383 (2013), 1-8.
    129. J.J. Low, M.L. Kreider, D.P. Pulsifer, A.S. Jones, T.H. Gilani, Band Gap Energy in Silicon. American Journal of Undergraduate research, 7(1) (2008), 26-32.
    130. K.P. O’Donnell, I.F. Torrente1, P.R. Edwards, R.W. Martin, The composition dependence of the InxGa1−xN bandgap. Journal of Crystal Growth, 269(1) (2004), 100-105.
    131. E.F. Keskenler, M. Tomakina, S. Dog, G. Turgut, S. Aydin, S. Dumand, B. Gurbulak, Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique. Journal of Alloys and Compounds, 550 (2013), 129-132.
    132. S. Chirakkara, S.B. Krupanidhi, Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer. Thin Solid Films, 520 (18) (2012), 5894-5899.
    133. R. Kumar, S. Chand, Structural, Optical, and Electrical Characterization of Al/n-ZnO/p-Si/Al Heterostructures. Journal of Electronic Materials, 44 (2015),194-201.
    134. Y. I. Alivov, D.C. Look, B.M. Ataev, A. K. Omaev, M. V. Chukichev, D. M. Bagnall, Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Applied Physics Letters, 83(23) (2003), 4720-4721.

    無法下載圖示 全文公開日期 2020/05/18 (校內網路)
    全文公開日期 2025/05/18 (校外網路)
    全文公開日期 2020/05/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE