簡易檢索 / 詳目顯示

研究生: 張祐嘉
You-Jia Jhang
論文名稱: 考量高占比再生能源與機組短期升降載變化率之最佳台電機組調派
Optimal Unit Commitment of the Taipower System by Considering High Penetration of Renewable Energy and Short-term Rate of Change for Units
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 吳進忠
Chin-Chung Wu
吳啟瑞
Chi-Jui Wu
呂學德
Shiue-Der Lu
郭明哲
Ming-Tse Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 124
中文關鍵詞: 升降載率機組排程過濾隱枚舉法粒子群演算法模擬退火法廣義乘子法隨機可行方向法
外文關鍵詞: Ramp Rate, Unit Commitment, Filtering Constraint Implicit Enumeration Method, Particle Swarm Optimization, Simulated Annealing, Generalized Multiplier Method, Random Feasible Directions Algorithms
相關次數: 點閱:356下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將針對大量風力與太陽能併入獨立電網系統後,考量火力機組彈性調度之升降載率於短時間內所需應付的負載變動進行最佳化機組派。其中,發電機所需參數將以電力公司提供的實際機組進行分析;本文將以改良優先順序法搭配過濾隱枚舉法、慣性權重粒子群演算法、模擬退火法、廣義乘子結合隨機可行方向法,用於求解電力系統中具有大規模的非線性混合整數規劃的機組調派問題,以避免在搜尋時陷入區域解或是不可行解區間,並比較這些演算法求解的速度、精確度的優劣,演算法部份將以Matlab進行編譯。
    本文選定20台火力發電機組為排程機組,並在30分鐘與10分鐘內補足因再生能源不穩定所造成之缺口,最後發現以廣義乘子結合隨機可行方向法求得的解皆較其他演算法精準與快速。未來可藉由本文提出之機組排程,來穩定因再生能源驟降而造成之電力缺口。


    This thesis focuses on optimizing the unit commitment by considering the load change in a short time, short-term rate of change for units and flexible scheduling of thermoelectric units after a large generation of wind and solar energy is connected into the independent power system. The parameters required for the generators will be analyzed by the actual unit parameters provided by the utility. The improved priority method with filtering the hidden enumeration method, the inertia weight particle swarm algorithm, the simulated annealing method, the generalized multiplier combination stochastic feasible direction method are used for solving the optimization unit commitment problem of large-scale nonlinear mixed integer programming in power system in order to avoid falling into a regional solution or an infeasible interval during a search. The solving speeds of these algorithms and advantages and disadvantages of accuracy are compared. All of algorithms are compiled in Matlab.
    20 sets of thermal power units are selected for the unit commitment in this thesis. The instability caused by renewable energy is cancelled within 30 minutes or 10 minutes. Finally, the solution obtained by the generalized multiplier combined with the stochastic feasible method is accurate and fast compared with other algorithms. In the event of a shortage of electricity due to a sudden drop in renewable energy, the unit commitment proposed by this thesis can be used to stabilize the system.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 探討或解決的問題 2 1.3 國內外文獻探討 3 1.4 研究方法 5 1.5 本文與傳統機組排程的差異 6 1.6 論文架構 7 第二章 再生能源與火力發電介紹 9 2.1 前言 9 2.2 再生能源發展現況 10 2.2.1 全球再生發電現況 10 2.2.2 台灣再生能源發展現況 12 2.3 再生能源不穩定問題與解決方法 18 2.3.1 國外再生能源不穩定案例 18 2.3.2 國內再生能源不穩定問題現況分析 21 2.4 機組排程介紹與火力機組數學模型 25 2.4.1 機組排程 25 2.4.2 火力機組數學式與目標函數與限制式 26 2.5 升降載率與轉折點 32 第三章 研究方法及理論 35 3.1 前言 35 3.2 機組篩選規則策略 35 3.2.1 傳統版優先順序法原理 36 3.2.2 改良版優先順序法原理 38 3.3 過濾隱枚舉法的理論 43 3.4 粒子群演算法的理論 46 3.4.1 粒子群演算法介紹 46 3.4.2 慣性權重粒子群優法 48 3.5 擬退火法的理論 50 3.6 廣義乘子法與隨機可行方向法的理論 53 3.6.1 懲罰函數法 54 3.6.2 Lagrange乘子法 58 3.6.3 廣義乘子法 62 3.6.4 隨機可行方向法 66 3.7 台電機系統及曲線擬合法介紹 70 第四章 演算法說明及流程圖 75 4.1 前言 75 4.2 優先順序法結合過濾隱枚舉法 75 4.3 慣性粒子群演算法求解燃料成本 78 4.3.1 粒子設定 78 4.3.2 搜尋過程的限制條件 79 4.3.3 參數設定 79 4.3.4 演算法終止條件 80 4.3.5 慣性粒子群演算法步驟及流程圖 81 4.4 模擬退火法求解燃料成本 83 4.5 廣義乘子法求解不等限制式與燃料成本 87 4.6 本章結論 90 第五章 模擬結果分析 91 5.1 前言 91 5.2 參數設定 91 5.2.1 台電提供之機組參數 91 5.2.2 曲線擬合法轉換之結果與機組和演算法參數設定 94 5.3 基於經濟考量後30分鐘上升1560MW之升載排程 97 5.3.1 傳統優先順序法結果 98 5.3.2 改良優先順序法結果 99 5.3.3 慣性權重粒子群演算法結果 102 5.3.4 模擬退火法結果 103 5.3.5 廣義乘子結合隨機可行方向法結果 104 5.4 基於經濟考量後30分鐘台電機組之升載排程 107 5.5 基於經濟考量後10分鐘台電機組之升載排程 112 5.6 本章結論與比較 116 第六章 結論與未來展望 117 6.1 結論 117 6.2 未來展望 118 參考文獻 120

    [1] http://www.moeaboe.gov.tw/ECW, 經濟部能源局 再生能源政策, 2017.3.20.
    [2] Weiming Xiong, Yu Wang, Brian Vad Mathiesen and Xiliang Zhanga, “Case study of the constraints and potential contributions regarding wind curtailment in Northeast China”, Elsevier Energy, Vol. 110, pp. 55-64, Mar. 2016.
    [3] Wood, A. J. and B. F. Wollenberg, Power Generation Operation and Control, 2nd edition, John Willey & Sons, Inc., New York, 1996.
    [4] Carlos M. C. P, Morales-España, et al. “Dynamic Ramping Model Including Intraperiod Ramp-Rate Changes in Unit Commitment View Document”, IEEE Transactions on Sustainable Energy, Volume:8, Issue: 1, pp. 43-50, Jan. 2017.
    [5] Tao Ding, Zhaohong Bie, “Parallel Augmented Lagrangian Relaxation for Dynamic Economic Dispatch Using Diagonal Quadratic Approximation Method”, IEEE Power & Energy Society, Volume: 32, Issue: 2, pp. 1115-1126, Mar. 2017.
    [6] Rob van Haaren, Mahesh Morjaria and Vasilis Fthenakis, “An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics) plants”, Elsevier Energy, Volume:91, pp.894-902,Aug. 2015.
    [7] Mustafa Saka, Suleyman Sungur Tezcan, Ibrahim Eke, “Economic load dispatch using vortex search algorithm”, Electrical and Electronic Engineering (ICEEE), 2017, 4th International Conference.
    [8] 蔡明祥,改良灰狼與獅子最佳化演算法求解經濟調度問題,國立勤益科技大學,碩士論文,2016年。
    [9] 王孟軒,應用改良型蜂群演算法於日前市場最佳化機組排程與經濟調度,國立中山科技大學,碩士論文,2016年。
    [10] 姜朝欽,應用多重選擇式粒子群演算法求解最佳化短期火力機組排程之研究,碩士論文,2015年。
    [11] REN21, Renewables 2017 global Status Report, 2017.03.13.
    [12] http://www.taipower.com.tw/ , 台灣電力公司 再生能源發展概況, 2017.06.16.
    [13] Matt Golden, How Energy Efficiency Can Help Manage the Duck Curve, 2016.01.21.
    [14] CNREC, An eclipse-proof power grid with a lot of solar power, 2015.07.17.
    [15] 鄭金龍,「一窺台電系統風力與太陽能發電運轉實績」,台灣能源期刊 第三卷 第四期,2016年12月。
    [16] 唐慧琳,再生能源在台灣為何無法取代核電作為基載電力,財團法人國家研究政策基金會,2013年。
    [17] Chen. P.H. and H.C. Chang, ”Large-Scale Economic Dispatch by Genetic Algorithm”, IEEE Trans. On Power Systems, Vol. 10,No. 4, pp.1919-1926, 1995.
    [18] T. Senjyu; H. Yamashiro; K. Uezato; T. Funabashi, ”A unit commitment problem by using genetic algorithm based on unit characteristic classification”, in Proc. IEEE/Power Eng. Soc. Winter Meeting, Vol. 1, pp58-63, 2002.
    [19] Active Power Ramp Rates, University of Wisconsin-Madison, June 11, 2013.
    [20] Discussion Paper: Provision of Minimum and Maximum Ramp Rates and Ramping Capability Curves of Generating Units, Philippine Electricity Market Corporation, 2013.
    [21] V.n. Dieu and W. Ongsakul,” Enhanced augmented Lagrangian Hopfield network for unit commitment”, IEEE Proceedings - Generation, Transmission and Distribution, Vol. 153, No. 6, pp. 624-632, 2006.
    [22] Praveen Koduru ; Zhanshan Dong ; Sanjoy Das ; Stephen M. Welch ; Judith L. Roe ; Erika Charbit, “A Multiobjective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks,” IEEE Transactions on Evolutionary Computation, Vol. 12, No.5,pp.572-590, 2008.
    [23] T. Yang and T. O. Ting, "Methodological Priority List for Unit Commitment Problem", in Computer Science and Software Engineering, International Conference on, pp. 176-179, 2008.
    [24] Olsen, K. A. and B. Indredavik, “A Proofreading Tool using Brute Force Techniques”, IEEE Potentials, Vol. 30, No. 4, pp.18-22, 2011.
    [25] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in: Proc. IEEE Int. Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948, 1995.
    [26] R. C. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory,” in: Proc. IEEE Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39-43, 1995.
    [27] 林俋志,基於再生能源考量下之經濟調度規劃,國立台灣科技大學,碩士論文,2013年。
    [28] Y. Shi, and R. C. Eberhart, “Tracking and optimizing dynamic systems with particle swarms” ,Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp 94-100, 2001.
    [29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,“Equations of state calculations by fast computing machines,” Journal of Chemical Physics 21, pp. 1087-1092, 1953.
    [30] 張景逵,基於碳排放考量下之經濟調度規劃,國立台灣科技大學,碩士論文,2013年。
    [31] Hamed Kebriaei, Babak N. Araabi, Ashkan Rahimi-Kian,” Short-Term Load Forecasting With a New Nonsymmetric Penalty Function,” IEEE Transactions on Power Systems, Vol.26,No.4,pp1817-1825, 2011.
    [32] Way Kuo, Hsin-Hui Lin, Zhongkai Xu, Weixing Zhang,”Reliability Optimization with the Lagrange-Multiplier and Branch-and-Bound Technique,” IEEE Transactions on Reliability, Vol.36,No. 5,pp.624-630, 1987.
    [33] 呂學德,以廣義乘子法為基礎之隨機可行方向擬牛頓法求解機組排程問題,國立台灣科技大學,博士論文,2013年。
    [34] 謝政,非線性最優化理論與方法,高等教育出版社,2010年。
    [35] Theiler, J. and J. Alper, “On the Choice of Random Directions for Stochastic Approximation Algorithms,” IEEE Trans. on Automatic Control, Vol. 51, No. 3, pp. 476-481, 2006.
    [36] Chang, Y. P., W. K. Tseng and T. F. Tsao, “Application of Combined Feasible-Direction Method and Genetic Algorithm to Optimal Planning of Harmonic Filters Considering Uncertainty Conditions,” IEE Proc.-Gener. Transm. Distrib., Vol. 152, No. 5, pp. 729-736, 2005.

    QR CODE