簡易檢索 / 詳目顯示

研究生: 曹偉浪
Tomas - Cho
論文名稱: 鎖定式骨板之螺絲最佳植入位置於股骨骨折固定穩定度研究:應用有限元素分析之粒子群演算法
Design Optimization of Screw Position on the Fixation Stability of Locking Compression Plate for the Treatment of Femoral Shaft Fracture using FEA-based DPSO algorithm
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 陳文斌
W.P. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 89
外文關鍵詞: Locking Compression Plate, fixation stability, comminuted fracture, biomechanical optimization.
相關次數: 點閱:186下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Locked compression plates (LCP) have been widely used for a diaphyseal femoral fracture treatment and showed an improved fixation in osteoporotic bone. The clinical experiences have been used to investigate the fixation stability of the bone by considering several numbers and positions of the screws in the twelve-hole LCP. In fact, there are a lot of possible locations which can be placed in the plate holes. As an example, for six screws in the twelve-hole plate, there would be 924 possible locations of the screws. The purpose of this study is to discover the best screw configurations in the twelve-hole bone plate within two finite element (FE) models. A novel biomechanical optimization method namely Finite Element Analysis (FEA)-based Discrete Particle Swarm Optimization (DPSO) was used to find the optimum design.
    The results showed that increasing the number of screws decreased the motion of the constructs, and the performance of three screws per main segment shows no about significant different, compared to all screws occupied the plate hole, this lead to a conclusions that the stability can be achieved by increasing the number of screws and three screws on either of the fracture provide sufficient stability while minimizing the complications of plate fixation. Moreover, this method is flexible and can be applied to various FE models with certain defined boundary and loading conditions.

    ABSTRACT ....................................................................................................................... i CONTENTS ...................................................................................................................... ii LIST OF FIGURES .......................................................................................................... iii LIST OF TABLES ........................................................................................................... iv Chapter I INTRODUCTION ............................................................................................ 1 1.1 Motive .................................................................................................................. 1 1.2 ANSYS Parametric Design Language ............................................................... 3 1.3 Standard Particle Swarm Optimization .............................................................. 3 1.3.1 PSO’s Algorithm ......................................................................................... 4 1.3.2 The Parameters of PSO ............................................................................. 10 1.3.3 Constraint Handling .................................................................................. 11 1.4 Literatures Review ............................................................................................ 13 1.5 Structure of Dissertation ................................................................................... 21 Chapter II MATERIALS AND METHODS ................................................................. 22 2.1 Finite Element Analysis .................................................................................... 22 2.1.1 Preprocessing ............................................................................................. 23 2.1.1.1 Modeling..................................................................................... 23 2.1.1.2 Meshing ...................................................................................... 26 2.1.1.3 Applying Boundary Conditions ................................................ 27 2.1.2 Solution Phase ........................................................................................... 32 2.1.3 Post-Processing Phase ............................................................................... 32 2.2 Discrete Particle Swarm Optimization (DPSO) .............................................. 32 2.2.1 Design Variables........................................................................................ 35 2.2.2 DPSO’s Algorithm .................................................................................... 37 2.2.3 Parameters of DPSO .................................................................................. 40 Chapter III RESULTS ..................................................................................................... 41 3.1 Historical Results of DPSO .............................................................................. 41 3.1.1 Optimization Results for Simple Model .................................................. 41 3.1.2 Optimization Results for Femur Model .................................................. 54 3.2 Displacement Results ........................................................................................ 68 Chapter IV DISCUSSION .............................................................................................. 75 Chapter V CONCLUSIONS AND FUTURE WORKS ............................................... 78 5.1 Conclusions........................................................................................................ 78 5.2 Future Works ..................................................................................................... 79 APPENDIX A.................................................................................................................. 80 APPENDIX B .................................................................................................................. 84 REFERENCES ................................................................................................................ 85

    1. Egol, K. A., Kubiak, E. N., Fulkerson, E., Kummer, F. J., and Koval, K. J., "Biomechanics of Locked Plates and Screws," Journal of Orthopaedic Trauma, vol. 18 (2004)
    2. Stoffel, K., Dieter, U., Stachowiak, G., Gachter, A., and Kuster, M. S., "Biomechanical testing of the LCP - how can stability in locked internal fixators be controlled?," Injury, vol. 34, pp. 11-19 (2003)
    3. Ahmad, M., Nanda, R., Bajwa, A. S., Candal-Couto, J., Green, S., and Hui, A. C., "Biomechanical testing of the locking compression plate: When does the distance between bone and implant significantly reduce construct stability?," Injury, vol. 38, pp. 358-364 (2007)
    4. Williams, T. H. D. and Schenk, W., "Bridging-minimally invasive locking plate osteosynthesis (Bridging-MILPO): Technique description with prospective series of 20 tibial fractures," Injury, vol. 39, pp. 1198-1203 (2008)
    5. Foster, M. P. h., Papp, S., and Poitras, P., "Effects of screw position on construct stiffness, bone strain and plate strain in fracture fixation with locking plate," The Journal of Bone and Joint Surgery (Proceedings), vol. 91-B, pp. 236-b ( 2009)
    6. Korvick, D. L., Monville, J. D., Pijanowski, G. J., and Phillips, J. W., "The Effects of Screw Removal on Bone Strain in an Idealized Plated Bone Model," Veterinary Surgery, vol. 17, pp. 111-116 (1988)
    7. Haug, R. H., "The effects of screw number and length on two methods of tension band plating," Journal of Oral and Maxillofacial Surgery, vol. 51, pp. 159-162 (1993)
    8. Tornkvist, H., Hearn, T. C., and Schatzker, J., "The Strength of Plate Fixation in Relation to the Number and Spacing of Bone Screws," Journal of Orthopaedic Trauma, vol. 10 (1996)
    9. Field, J. R., Tornkvist, H., Hearn, T. C., Sumner-Smith, G., and Woodside, T. D., "The influence of screw omission on construction stiffness and bone surface strain in the application of bone plates to cadaveric bone," Injury, vol. 30, pp. 591-598 (1999)
    10. Dennis, J., Sanders, R., Milne, T., and Latta, L., "Minimal versus Maximal Compression Plating of the Ulna-A Biomechanical Study of Indirect Reduction," Journal of Orthopaedic Trauma, vol. 7 (1993)
    11. Ellis, T., Bourgeault, C. A., and Kyle, R. F., "Screw Position Affects Dynamic Compression Plate Strain in an In Vitro Fracture Model," Journal of Orthopaedic Trauma, vol. 15 (2001)
    12. Johnston, S. A., Lancaster, R. L., Hubbard, R. P., and Probst, C. W., "A Biomechanical Comparison of 7-Hole 3.5 mm Broad and 5-Hole 4.5 mm Narrow Dynamic Compression Plates," Veterinary Surgery, vol. 20, pp. 235-239 (1991)
    13. Miclau, T., Remiger, A., Tepic, S., Lindsey, R., and McLff, T., "A Mechanical Comparison of the Dynamic Compression Plate, Limited Contact-Dynamic Compression Plate, and Point Contact Fixator," Journal of Orthopaedic Trauma, vol. 9 (1995)
    14. ElMaraghy, A. W., ElMaraghy, M. W., Nousiainen, M., Richards, R. R., and Schemitsch, E. H., "Influence of the Number of Cortices on the Stiffness of Plate Fixation of Diaphyseal Fractures," Journal of Orthopaedic Trauma, vol. 15 (2001)
    15. Fitzpatrick, D. C., Doornink, J., Madey, S. M., and Bottlang, M., "Relative stability of conventional and locked plating fixation in a model of the osteoporotic femoral diaphysis," Clinical Biomechanics, vol. 24, pp. 203-209 (2009)
    16. Aro, H. T., Kelly, P. J., Lewallen, D. G., and Chao, E. Y. S., "The Effects of Physiologic Dynamic Compression on Bone Healing Under External Fixation," Clinical Orthopaedics and Related Research, vol. 256 (1990)
    17. Gautier, E. and Sommer, C., "Guidelines for the clinical application of the LCP," Injury, vol. 34, pp. 63-76 (2003)
    18. Sommer, C., Gautier, E., Muller, M., Helfet, D. L., and Wagner, M., "First clinical results of the Locking Compression Plate (LCP)," Injury, vol. 34, pp. 43-54 (2003)
    19. Wagner, M., "General principles for the clinical use of the LCP," Injury, vol. 34, pp. 31-42 (2003)
    20. Hak, D. J., Althausen, P., and Hazelwood, S. J., "Locked Plate Fixation of Osteoporotic Humeral Shaft Fractures: Are Two Locking Screws Per Segment Enough?," Journal of Orthopaedic Trauma, vol. 24 (2010)
    21. Freeman, A. L., Tornetta, P., III, Schmidt, A., Bechtold, J., Ricci, W., and Fleming, M., "How Much Do Locked Screws Add to the Fixation of "Hybrid" Plate Constructs in Osteoporotic Bone?," Journal of Orthopaedic Trauma, vol. 24 (2010)
    22. ANSYS Programmer’s Guide. ANSYS Release 10.0.002185.cSAS IP, Inc (2005)
    23. Liu, B., Wang, L., and Jin, Y.-h., "Hybrid Particle Swarm Optimization for Flow Shop Scheduling with Stochastic Processing Time," in Computational Intelligence and Security. vol. 3801, Y. Hao, et al., Eds., ed: Springer Berlin / Heidelberg, pp. 630-637 (2005)
    24. Nadia Nedjah, Luiza de Macedo Mourelle, Swarm Intelligent Systems, ISBN 3-540-33868-3. (Eds.) Springer Vol. 26 (2006)
    25. Yang, I-Tung, “Application of Computational Intelligence in Engineering“, Course, National Taiwan University of Science and Technology, Taiwan (2009).
    26. Stolk, J., Verdonschot, N., and Huiskes, R., "Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction," Journal of biomechanics, vol. 34, pp. 917-926 (2001)
    27. Wang, C. J., Yettram, A. L., Yao, M. S., and Procter, P., "Finite element analysis of a Gamma nail within a fractured femur," Medical Engineering & Physics, vol. 20, pp. 677-683 (1998)
    28. Shen, Alexander, Algorithms and Programming Problems and Solutions, ISBN: 9780817647605 (2008)
    29. Kennedy, J., Eberhart, R. C., and Shi, Y, Swarm intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    QR CODE