簡易檢索 / 詳目顯示

研究生: 李耿忠
Ken-Chung Lee
論文名稱: 熱裂解法製備硫化鉬及其電化學產氫觸媒效果分析
Molybdenum Sulfide Synthesized by thermo-decomposing as an Electrocatalyst for Hydrogen Evolution
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 蔡大翔
Dah-Shyang Tsai
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 101
中文關鍵詞: 電催化觸媒電解水產氫硫化鉬
外文關鍵詞: Electrocatalytic, hydrogen evolution, Molybdenum sulfide
相關次數: 點閱:404下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氫氣是一種非常理的想乾淨能源,可將氫氣氧化成為水來提供能量,其反應物與產物對環境皆無任何的傷害。在此研究中,以導電碳布為基材,於低溫、常壓環境下進行熱裂解反應,以裂解前驅物(四硫鉬酸銨)來製備硫化鉬(MoSx),作為電催化產氫之觸媒。

在裂解反應中,電流密度最大化的觸媒合成條件為;反應溫度150 oC下、濃度1 wt%四硫鉬酸銨、反應時間10小時;於0.5M硫酸水溶液為電解液中,硫化鉬其電催化效果可在 下,達到電流密度60.4 mAcm-2,且產氫反應之Tafel slope為53.7 mV/dec。在長時間穩定度測試下,於 經六小時反應後,電流僅衰退14.66%。合成之產氫觸媒會以XRD、XPS、SEM分析其結構與組成。

以前述條件進行熱裂解法製備硫化鉬,再以光化學有機金屬沉積法(PMOD)合成鎳/氧化鎳的金屬薄膜,加以提升硫化鉬產氫的催化效果。在電化學的測試下,可降低起始電壓約0.03 V,且在 處電流密度自58.8 mAcm-2增加至67.9 mAcm-2,增加約15.5%。


Hydrogen is an ideal clean energy because it provides power by oxidation into the clean product, water. In this research, molybdenum sulfide (MoSx) was ynthesized at low temperatures within atmospheric pressure by thermo-decomposing from the ammonium tetrathiomolybdate (ATM) which was dip-coated carbon cloth.

The optimal condition for electrocatalytic water splitting catalysts preparation was at 150 oC thermal treatment for 10 hours under ambient pressure. Catalysts were characterized by SEM, XRD and XPS. The Tafel slope for HER is about 53.7 mV/dec. The current density at is 60.4 mAcm-2 in 0.5M H2SO4 electrolyte.

At last, we also try to enhance the MoSx performers by covering the nickel and nickel oxide thin film by using the photochemical metal organic deposition (PMOD) method. The MoSx covered with nickel/nickel oxide this film declined the onset potential from -0.23 V to -0.2V and the current density at is increase by 15.5% to 67.9 mAcm-2 in 0.5M H2SO4 electrolyte.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第1章、 緒論 1 1.1. 前言 1 1.2. 研究動機與目的 2 第2章、 文獻回顧 3 2.1. 氫能源及其製備方法 3 2.1.1. 氫氣製備方法 3 2.1.2. 石化燃料產氫 4 2.1.3. 水分解產氫 8 2.1.4. 生質法產氫 11 2.2. 電解水產氫之機制及催化觸媒 12 2.2.1. 電解水之電化學原理 13 2.2.2. 反應機制與Tafel方程式之關係 15 2.3. 電解產氫之催化觸媒 20 2.3.1. 常見產氫之金屬觸媒 20 2.3.2. 金屬硫化物觸媒 23 2.4. 光化學有機金屬沉積 (PHOTOCHEMICAL METAL ORGANIC DEPOSITION, PMOD) 29 2.4.1. 光化學有機金屬沉積法製備金屬薄膜 29 第3章、 實驗部分 32 3.1. 實驗流程 32 3.2. 實驗儀器 33 3.3. 實驗藥品 34 3.4. 實驗步驟 35 3.4.1. 導電基材前處理 35 3.4.2. 觸媒合成與電極製備 36 3.4.3. 電化學性質測試 38 3.5. 材料分析 39 3.5.1. 電化學特性分析 39 3.5.2. 傅立葉紅外線光譜儀 (FT-IR) 40 3.5.3. 場發掃描式電子顯微鏡 (FE-SEM) 41 3.5.4. 能量散射光譜儀 (EDS) 42 3.5.5. X光繞射光譜 (XRD) 42 3.5.6. X射線光電子能譜儀 (XPS) 43 第4章、 結果與討論 44 4.1. 電化學特性分析 44 4.1.1. 硫化鉬之電化學分析 44 4.1.2. 鎳薄膜以光化學有機金屬沉積法沉積於硫化鉬 55 4.2. 硫化鉬之熱重分析 59 4.3. X光繞射圖譜分析 64 4.4. 傅立葉轉換紅外線光譜分析 65 4.5. 掃描式電子顯微鏡影像 66 4.6. 電子能譜分析(EDS) 69 4.7. X光電子能譜分析 82 第5章、 結論 91 第6章、 參考文獻 92 附錄 98

1. T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou, Y. Li and M. Li,Size-Dependent Enhancement of Electrocatalytic Oxygen-Reduction and Hydrogen-Evolution Performance of MoS2 Particles, Chemistry-a European Journal, 2013, 19, 11939-11948.
2. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. K. Norskov,Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, Journal of the American Chemical Society, 2005, 127, 5308-5309.
3. H. Vrubel and X. Hu,Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst, ACS Catalysis, 2013, 3, 2002-2011.
4. S. Murugesan, A. Akkineni, B. P. Chou, M. S. Glaz, D. A. Vanden Bout and K. J. Stevenson,Room Temperature Electrodeposition of Molybdenum Sulfide for Catalytic and Photoluminescence Applications, ACS Nano, 2013, 7, 8199-8205.
5. J. D. Holladay, J. Hu, D. L. King and Y. Wang,An overview of hydrogen production technologies, Catalysis Today, 2009, 139, 244-260.
6. L. Pino, A. Vita, M. Cordaro, V. Recupero and M. S. Hegde,A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles, Applied Catalysis A: General, 2003, 243, 135-146.
7. C. E. Taylor, B. H. Howard and C. R. Myers,Methanol conversion for the production of hydrogen, Industrial & Engineering Chemistry Research, 2007, 46, 8906-8909.
8. C. Li, C. Yu and S. Shen,Isotopic Studies on the Mechanism of Partial Oxidation of CH4 to Syngas over a Ni/Al2O3 Catalyst, Catalysis Letters, 2001, 75, 183-189.
9. D. R. Palo, R. A. Dagle and J. D. Holladay,Methanol Steam Reforming for Hydrogen Production, Chemical Reviews, 2007, 107, 3992-4021.
10. S. Yao, A. Nakayama and E. Suzuki,Acetylene and hydrogen from pulsed plasma conversion of methane, Catalysis Today, 2001, 71, 219-223.
11. M. S. Benilov and G. V. Naidis,Modeling of hydrogen-rich gas production by plasma reforming of hydrocarbon fuels, International Journal of Hydrogen Energy, 2006, 31, 769-774.
12. R. B. Biniwale, A. Mizuno and M. Ichikawa,Hydrogen production by reforming of iso-octane using spray-pulsed injection and effect of non-thermal plasma, Applied Catalysis a-General, 2004, 276, 169-177.
13. S. Caro, D. Torres and M. Toledo,Syngas production from residual biomass of forestry and cereal plantations using hybrid filtration combustion, International Journal of Hydrogen Energy, 2015, 40, 2568-2577.
14. M. Roeb, M. Neises, J.-P. Säck, P. Rietbrock, N. Monnerie, J. Dersch, M. Schmitz and C. Sattler,Operational strategy of a two-step thermochemical process for solar hydrogen production, International Journal of Hydrogen Energy, 2009, 34, 4537-4545.
15. R. de Levie,The electrolysis of water, J. Electroanal. Chem., 1999, 476, 92-93.
16. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen,Engineering heterogeneous semiconductors for solar water splitting, Journal of Materials Chemistry A, 2015, 3, 2485-2534.
17. M. Antoniadou and P. Lianos,Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell, Appl. Catal. B-Environ., 2010, 99, 307-313.
18. S. Manish and R. Banerjee,Comparison of biohydrogen production processes, International Journal of Hydrogen Energy, 2008, 33, 279-286.
19. S. Fletcher,Tafel slopes from first principles, J. Solid State Electrochem., 2008, 13, 537-549.
20. J. Tafel,The polarisation of cathodic hydrogen development, ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-STOCHIOMETRIE UND VERWANDTSCHAFTSLEHRE, 1905, 50, 641-712.
21. S. Fletcher,A non-Marcus model for electrostatic fluctuations in long range electron transfer, J. Solid State Electrochem., 2007, 11, 965-969.
22. Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara and T. F. Jaramillo,Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials, Nano Letters, 2011, 11, 4168-4175.
23. S. Trasatti,Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 39, 163-184.
24. T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang and L.-J. Li,Comparative study on MoS2 and WS2 for electrocatalytic water splitting, International Journal of Hydrogen Energy, 2013, 38, 12302-12309.
25. T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff,Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science, 2007, 317, 100-102.
26. Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang and D. P. Wilkinson,MoS2 Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction, ACS Catalysis, 2013, 3, 2101-2107.
27. X. Chia, A. Ambrosi, D. Sedmidubský, Z. Sofer and M. Pumera,Precise Tuning of the Charge Transfer Kinetics and Catalytic Properties of MoS2 Materials via Electrochemical Methods, Chemistry – A European Journal, 2014, 20, 17426-17432.
28. D. Wang, Z. Wang, C. Wang, P. Zhou, Z. Wu and Z. Liu,Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction, Electrochemistry Communications, 2013, 34, 219-222.
29. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. S. Li and S. Jin,Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets, Journal of the American Chemical Society, 2013, 135, 10274-10277.
30. J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont and T. F. Jaramillo,Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials, ACS Catalysis, 2014, 4, 3957-3971.
31. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla,Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction, Nano Letters, 2013, 13, 6222-6227.
32. A. Ambrosi, Z. Sofer and M. Pumera,Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2, Small, 2015, 11, 605-612.
33. H. T. Wang, Z. Y. Lu, S. C. Xu, D. S. Kong, J. J. Cha, G. Y. Zheng, P. C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz and Y. Cui,Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 19701-19706.
34. K. Zhang, H.-J. Kim, J.-T. Lee, G.-W. Chang, X. Shi, W. Kim, M. Ma, K.-j. Kong, J.-M. Choi, M.-S. Song and J. H. Park,Unconventional Pore and Defect Generation in Molybdenum Disulfide: Application in High-Rate Lithium-Ion Batteries and the Hydrogen Evolution Reaction, Chemsuschem, 2014, 7, 2489-2495.
35. J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Norskov and I. Chorkendorff,Hydrogen evolution on nano-particulate transition metal sulfides, Faraday Discussions, 2009, 140, 219-231.
36. X.-J. Lv, G.-W. She, S.-X. Zhou and Y.-M. Li,Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts, RSC Advances, 2013, 3, 21231-21236.
37. X. Sun, J. Dai, Y. Guo, C. Wu, F. Hu, J. Zhao, X. Zeng and Y. Xie,Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution, Nanoscale, 2014, 6, 8359-8367.
38. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie,Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution, Journal of the American Chemical Society, 2013, 135, 17881-17888.
39. W. Zhou, D. Hou, Y. Sang, S. Yao, J. Zhou, G. Li, L. Li, H. Liu and S. Chen,MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction, Journal of Materials Chemistry A, 2014, 2, 11358-11364.
40. Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito, J. Han, X. Guo, Z. Tang, T. Fujita, A. Hirata and M. Chen,Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production, Advanced Materials, 2014, 26, 8023-+.
41. Z. Lu, H. Zhang, W. Zhu, X. Yu, Y. Kuang, Z. Chang, X. Lei and X. Sun,In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution, Chemical Communications, 2013, 49, 7516-7518.
42. J. Kibsgaard, Z. Chen, B. N. Reinecke and T. F. Jaramillo,Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nature Materials, 2012, 11, 963-969.
43. D. Merki, H. Vrubel, L. Rovelli, S. Fierro and X. Hu,Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution, Chemical Science, 2012, 3, 2515-2525.
44. A. A. Avey and R. H. Hill,Solid state photochemistry of Cu-2(OH2)(2)(O2C(CH2)(4)CH3)(4) in thin films: The photochemical formation of high-quality films of copper and copper(I) oxide. Demonstration of a novel lithographic technique for the patterning of copper, Journal of the American Chemical Society, 1996, 118, 237-238.
45. A. A. Avey and R. H. Hill,Solid State Photochemistry of Cu2(OH2)2(O2C(CH2)4CH3)4 in Thin Films:  The Photochemical Formation of High-Quality Films of Copper and Copper(I) Oxide. Demonstration of a Novel Lithographic Technique for the Patterning of Copper, Journal of the American Chemical Society, 1996, 118, 237-238.
46. M. Gao and R. H. Hill,High efficiency photoresist-free lithography of UO3 patterns from amorphous films of uranyl complexes, Journal of Materials Research, 1998, 13, 1379-1389.
47. B. Marciniak and G. E. Buono-Core,Photochemical properties of 1,3-diketonate transition metal chelates, Journal of Photochemistry and Photobiology A: Chemistry, 1990, 52, 1-25.
48. L. S. Andronic,Photochemical metal organic deposition of layered materials of chromium oxide and lead oxide and of uranium oxide and cobalt oxide, MASTER, Simon fraser university, 1995.
49. H. W. Wang, P. Skeldon and G. E. Thompson,Thermogravimetric–differential thermal analysis of the solid-state decomposition of ammonium tetrathiomolybdate during heating in argon, Journal of Materials Science, 1998, 33, 3079-3083.
50. H. W. Wang, P. Skeldon, G. E. Thompson and G. C. Wood,Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate, Journal of Materials Science, 1997, 32, 497-502.
51. S. P. Jiang and S. P. S. Badwal,Hydrogen oxidation at the nickel and platinum electrodes on yttria-tetragonal zirconia electrolyte, Journal of the Electrochemical Society, 1997, 144, 3777-3784.
52. C.-L. Hsu, Y.-H. Chang, T.-Y. Chen, C.-C. Tseng, K.-H. Wei and L.-J. Li,Enhancing the electrocatalytic water splitting efficiency for amorphous MoSx, International Journal of Hydrogen Energy, 2014, 39, 4788-4793.
53. Z. Sun, Q. Zhao, G. Zhang, Y. Li, G. Zhang, F. Zhang and X. Fan,Exfoliated MoS2supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities, RSC Adv., 2015, 5, 10352-10357.
54. M. Al-Mamun, H. Zhang, P. Liu, Y. Wang, J. Cao and H. Zhao,Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells, RSC Advances, 2014, 4, 21277.

無法下載圖示 全文公開日期 2020/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE