簡易檢索 / 詳目顯示

研究生: 林庭澔
Ting-Hao Lin
論文名稱: 六軸串聯式機械手臂之參數校正與軌跡補償研究
Study on Parameter Calibration and Trajectory Compensation of a Six-Axis Serial Robot Manipulator
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 郭永麟
Yong-Lin Kuo
蔡明忠
Ming-Jong Tsai
楊振雄
Cheng-Hsiung Yang
蘇順豐
Shun-Feng Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 串聯式機械手臂軌跡補償演算法影像處理最小平方法擴展型卡爾曼濾波小波類神經網路
外文關鍵詞: serial robot manipulator, trajectory compensation algorithm, image processing, least square method, extend kalman filter, wavelet neural network
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著自動化工業的發展,串聯式機械手臂被廣泛應用於工業領域,其結構由多根相鄰連桿所組成,終端點的位置易受到每個連桿的累積誤差,導致定位精度下降,無法完成其任務,因此提升終端點定位精度是串聯式機械手臂相當重要的課題。絕大多數文獻皆採用雷射追蹤儀或絕對精度機械手臂作為量測裝置,測量多組機械手臂的不同姿態,並透過修正運動學模型參數,提升終端點的靜態定位精度;然而,高精度量測儀器的成本皆相當昂貴,因此本研究採用自行研發的量測裝置,量測機械手臂的運動軌跡。
本論文的研究主旨為開發一套機械手臂的軌跡補償演算法,試圖提升機械手臂的軌跡準確度,使得機械手臂的實際軌跡能更趨近預期軌跡,藉由實驗方法驗證其可行性與成效,並探討未來的改進目標,其中六軸機械手臂為鈦思科技所研發的串聯式六軸機械手臂IT-Robot。
本研究首先針對六軸機械手臂IT-Robot進行分析,推導正向運動學、逆向運動學與工作空間,並運用模擬方法對推導結果進行驗證,接著提出校正與補償演算法,採用最小平方法修正D-H模型的參數,以及訓練小波類神經網路建立軌跡誤差模型,預測終端點的真實軌跡,再透過逆向疊代法修正角度命令,以提升機械手臂的軌跡準確度,將修正過的角度命令輸入至控制器,控制IT-Robot運動,利用深度攝影機及慣性感測器,透過影像處理技術感測目標特徵點,結合EKF模型,估測機械手臂的實際軌跡,最後對實驗數據進行分析及比較,歸納出研究成果與未來可繼續研究之方向。


With the development of the automation industry, series robot arms are widely used in industry field. The structure of a series robot arm consists of multiple links, and positioning accuracy is susceptible to the cumulative errors of each link. Therefore, improving the accuracy of the end-effector is a very important issue. Most of studies use a laser tracker or an absolute measuring robot arm to measure the actual positions of a robot arm, which are used to calibrate the DH parameters to improve static position accuracy. However, high precision measurement systems are very expensive. In this thesis, a 6-DoF measurement system is established to measure the actual trajectories of a robot arm.
The main purpose of this thesis is to develope a trajectory compensation algorithm for a robot arm, to try improving the accuracy of a robot arm’s trajectory, to make an actual trajectory closer to a desired trajectory. Expeiments are conducted to verify the feasibility and effectiveness of the algorithm and to discuss future improvement goals. A series six-axis robot arm called IT-Robot is developed by Terasoft Inc .
First, this thesis analyzes the mathmatical model of the IT-Robot, derives its forward kinematics and inverse kinematics, define the effective workspace, and verify the correctness by using simulation methods. Secondly, one proposes a calibration and compensation algorithm, which uses the least square method to modify the parameters of the D-H models and trains a wavelet neural network to establish the trajectory error model. A set of angle commands is corrected by iterative-inverse method, which tries to improve the trajectory accuracy of the IT-Robot. The correct angle command is input to a controller to control the motions of the IT-Robot. A marker and an inertial measurement unit (IMU) are fixed at the one side of the gripper. The position is measured by a depth camera using image processing methods, and oriention is measured by the IMU. However, bias of the IMU and measurement noises will affect measurement accuracy. In order to improve the measurement accuracy, Extend Kalman filter is used to estimate the actual trajectory of a robot arm. Finally, one analyzes and compares the experiment results.
After the feasibilty is verified, a trajectory compensation algorithm is proposed and the future reseaches can be further studied.

摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xii 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 串聯式機械手臂 2 1.2.2 機械手臂校正與補償 2 1.3 研究動機 5 1.4 研究方法 6 1.5 研究貢獻 7 1.6 論文架構 8 第2章 機械手臂運動學 9 2.1 六軸串聯式機械手臂 9 2.2 D-H座標轉換法則 10 2.3 正向運動學 12 2.4 逆向運動學 15 2.5 工作空間分析 17 2.6 路徑規劃 19 第3章 機械手臂校正與補償 21 3.1 機械手臂誤差分析 21 3.2 校正與補償流程 22 3.3 相機模型 25 3.4 影像處理 27 3.4.1 RGB三色原理 27 3.4.2 二值化運算 28 3.4.3 侵蝕 29 3.4.4 膨脹 30 3.4.5 質心計算 32 3.5 最小平方法 32 3.6 卡爾曼濾波器 33 3.6.1 演算法介紹 34 3.6.2 傳感器融合之擴展型卡爾曼濾波器 35 3.6.3 數值積分 43 3.7 小波類神經網路 44 3.8 逆向疊代 47 第4章 實驗規劃 49 4.1 硬體架構介紹 49 4.1.1 深度攝影機規格 49 4.1.2 慣性感測器規格 50 4.1.3 IT-Robot 51 4.2 系統流程說明 54 4.2.1 系統硬體流程 54 4.2.2 系統軟體流程 55 4.3 理論驗證 56 4.3.1 運動學驗證 56 4.3.2 工作空間驗證 59 4.3.3 五次多項式軌跡 60 4.4 相機校正 62 4.5 影像處理實驗 63 4.6 D-H參數校正 65 4.7 機械手臂軌跡估測 67 4.8 小波類神經網路模型 78 第5章 實驗結果與分析 84 5.1 實驗步驟 84 5.2 實驗結果 85 5.2.1 實驗數據一 85 5.2.2 實驗數據二 90 第6章 結論與未來展望 95 6.1 結論 95 6.2 未來展望 96 參考文獻 97

[1] Devol, J. G. C. (1961). U.S. Patent No. 2988237. Washington, DC: U.S. Patent and Trademark Office.
[2] Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot Manipulator Control: Theory and Practice. CRC Press.
[3] Murray, R. M., Li, Z., Sastry, S. S., & Sastry, S. S. (1994). A Mathematical Introduction to Robotic Manipulation. CRC press.
[4] Paul, R. P. (1981). Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators.
[5] Hartenberg, R., & Danavit, J. (1964). Kinematic synthesis of linkages.
[6] Wen, S., Ma, Z., Wen, S., Zhao, Y., & Yao, J. (2014). The study of NAO robot arm based on direct kinematics by using DH method. In 2014 UKACC International Conference on Control, July 9-11, Loughborough, U.K., 515-518.
[7] Verma, A., & Deshpande, V. A. (2011). End-effector position analysis of scorbot-er vplus robot. International Journal of Smart Home, 5(1), 1-6.
[8] Trujillo, J. L. A., Serrezuela, R. R., Azhmyakov, V., & Zamora, R. S. (2018). Kinematic model of the scorbot 4PC manipulator implemented in Matlab’s guide. Contemporary Engineering Sciences, 11(4), 183-199.
[9] Deshpande, V. A., & George, P. M. (2012). Analytical solution for inverse kinematics of SCORBOT-ER-Vplus Robot. International Journal of Emerging Technology and Advanced Engineering, 2(3), 478-481.
[10] Cao, Y., Zang, H., Wu, L., & Lu, T. (2011). An engineering oriented method for the three dimensional workspace generation of robot manipulator. Journal of Information and Computational Science, 8(1), 51-61.
[11] Wang, Z., Xu, D., Wu, B., & Li, F. (2012). Motion planning for the fast opening of the protection cover based on high order polynomial interpolation. In 2012 IEEE International Conference on Robotics and Biomimetics , December 11-14, Guangzhou, China, 2311-2316.
[12] Ye, C., Zhao, H., Lin, Y., & Ding, H. (2017). Kinematic calibration and compensation for industrial robots using a telescoping ballbar. In 2017 IEEE 7th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, July 31-August 4, Hawaii, USA, 574-579.
[13] Greenway, B. (2000). Robot accuracy. Industrial robot, 27(4), 257-265.
[14] Liu, J., Zhang, Y., & Li, Z. (2007). Improving the positioning accuracy of a neurosurgical robot system. IEEE/ASME Transactions on Mechatronics, 12(5), 527-533.
[15] Mao, C., Li, S., Chen, Z., Zhang, X., & Li, C. (2020). Robust kinematic calibration for improving collaboration accuracy of dual-arm manipulators with experimental validation. Measurement, 155. DOI: https://doi.org/10.1016/
j.measurement.2020.107524.
[16] Jiang, Z., Zhou, W., Li, H., Mo, Y., Ni, W., & Huang, Q. (2018). A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Transactions on Industrial Electronics, 65(4), 3337-3345.
[17] Kluz, R., Kubit, A., & Trzepiecinski, T. (2018). Investigations of temperature-induced errors in positioning of an industrial robot arm. Journal of Mechanical Science and Technology, 32(11), 5421-5432.
[18] Rim, C. H., Rim, C. M., Kim, J. G., Chen, G., & Pak, J. S. (2019). A calibration method of portable coordinate measuring arms by using artifacts. MAPAN-Journal of Metrology Society of India, 34(1), 1-11.
[19] Nubiola, A., & Bonev, I. A. (2014). Absolute robot calibration with a single telescoping ballbar. Precision Engineering, 38(3), 472-480.
[20] Yin, S., Ren, Y., Guo, Y., Zhu, J., Yang, S., & Ye, S. (2014). Development and calibration of an integrated 3D scanning system for high-accuracy large-scale metrology. Measurement, 54, 65-76.
[21] Gaudreault, M., Joubair, A., & Bonev, I. (2018). Self-calibration of an industrial robot using a novel affordable 3D measuring device. Sensors, 18(10), 3380.
[22] Gong, C., Yuan, J., & Ni, J. (2000). Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools and Manufacture, 40(14), 2119-2137.
[23] Dupuis, J., Holst, C., & Kuhlmann, H. (2017). Improving the kinematic calibration of a coordinate measuring arm using configuration analysis. Precision Engineering, 50, 171-182.
[24] Zeng, Y., Tian, W., & Liao, W. (2016). Positional error similarity analysis for error compensation of industrial robots. Robotics and Computer-integrated Manufacturing, 42, 113-120.
[25] Joubair, A., Zhao, L. F., Bigras, P., & Bonev, I. (2015). Absolute accuracy analysis and improvement of a hybrid 6-DOF medical robot. Industrial Robot, 42(1), 44-53.
[26] Yin, S., Guo, Y., Ren, Y., Zhu, J., Yang, S., & Ye, S. (2014). Real-time thermal error compensation method for robotic visual inspection system. International Journal of Advanced Manufacturing Technology, 75(5), 933-946.
[27] Nubiola, A., & Bonev, I. A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-integrated Manufacturing, 29(1), 236-245.
[28] Yang, X., Wu, L., Li, J., & Chen, K. (2014). A minimal kinematic model for serial robot calibration using POE formula. Robotics and Computer-integrated Manufacturing, 30(3), 326-334.
[29] He, S., Ma, L., Yan, C., Lee, C. H., & Hu, P. (2019). Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment. International Journal of Advanced Manufacturing Technology, 102(5), 1037-1050.
[30] Guo, Y., Song, B., Tang, X., Zhou, X., & Jiang, Z. (2020). A measurement method for calibrating kinematic parameters of industrial robots with point constraint by a laser displacement sensor. Measurement Science and Technology, 31(7). DOI: https://doi.org/10.1088/1361-6501/ab7bc1.
[31] Yang, P., Guo, Z., & Kong, Y. (2020). Plane kinematic calibration method for industrial robot based on dynamic measurement of double ball bar. Precision Engineering, 62, 265-272.
[32] Qi, J., Chen, B., & Zhang, D. (2020). Compensation for absolute positioning error of industrial robot considering the optimized measurement space. International Journal of Advanced Robotic Systems, 17(2). DOI: https://doi.org/10.1177/1729881420921644.
[33] Joubair, A., & Bonev, I. A. (2015). Kinematic calibration of a six-axis serial robot using distance and sphere constraints. International Journal of Advanced Manufacturing Technology, 77(1), 515-523.
[34] Zhenhua, W., Hui, X., Guodong, C., Rongchuan, S., & Sun, L. (2014). A distance error based industrial robot kinematic calibration method. Industrial Robot, 41(5), 439-446.
[35] Angelidis, A., & Vosniakos, G. C. (2014). Prediction and compensation of relative position error along industrial robot end-effector paths. International Journal of Precision Engineering and Manufacturing, 15(1), 63-73.
[36] Chen, X., Zhang, Q., & Sun, Y. (2019). Model-based compensation and Pareto-optimal trajectory modification method for robotic applications. International Journal of Precision Engineering and Manufacturing, 20(7), 1127-1137.
[37] Bernal, A. C., & Aguilar, G. M. (2012). Vision system via USB for object recognition and manipulation with Scorbot-ER 4U. International Journal of Computer Applications, 56(18), 10-15.
[38] Singh, T. P., Suresh, P., & Chandan, S. (2017). Forward and inverse kinematic analysis of robotic manipulators. International Research Journal of Engineering and Technology, 4(2), 1459-1468.
[39] Malek, F. R. (2007). Forward kinematics and differential motion analysis of SCORBOT ER-V plus robotic System. International Journal of Innovative Research in Science, Engineering and Technology, 4(4), 1997-2002.
[40] Chaudhary, H., & Prasad, R. (2011). Intelligent inverse kinematic control of scorbot-er v plus robot manipulator. International Journal of Advances in Engineering and Technology, 1(5), 158.
[41] Ali, S. A., Annuar, K. A. M., & Miskon, M. F. (2016). Trajectory planning for exoskeleton robot by using cubic and quintic polynomial equation. International Journal of Applied Engineering Research, 11(13), 7943-7946.
[42] Aoyagi, S., Kohama, A., Nakata, Y., Hayano, Y., & Suzuki, M. (2010). Improvement of robot accuracy by calibrating kinematic model using a laser tracking system-compensation of non-geometric errors using neural networks and selection of optimal measuring points using genetic algorithm. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, Taipei, Taiwan, 5660-5665.
[43] Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334.
[44] Bhargavi, K., & Jyothi, S. (2014). A survey on threshold based segmentation technique in image processing. International Journal of Innovative Research and Development, 3(12), 234-239.
[45] Jawas, N., & Suciati, N. (2013). Image inpainting using erosion and dilation operation. International Journal of Advanced Science and Technology, 51, 127-134.
[46] Gaurav, K., & Ghanekar, U. (2018). Image steganography based on Canny edge detection, dilation operator and hybrid coding. Journal of Information Security and Applications, 41, 41-51.
[47] Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441.
[48] Chen, S. Y. (2011). Kalman filter for robot vision: a survey. IEEE Transactions on Industrial Electronics, 59(11), 4409-4420.
[49] Kuo, Y. L., Lin, C. C., Pong, W. S., Wu, C. W., & Wu, Y. W. (2017). Position and orientation estimations of the end-effector of a robot arm using Kalman Filter. The 14th International Conference on Automation and Technology, December 8-10, Kaohsiung, Taiwan.
[50] Horwitz, A. (2001). A version of Simpson's rule for multiple integrals. Journal of Computational and Applied Mathematics, 134(1), 1-11.
[51] Zhang, J., Walter, G. G., Miao, Y., & Lee, W. N. W. (1995). Wavelet neural networks for function learning. IEEE Transactions on Signal Processing, 43(6), 1485-1497.
[52] Judd, R., & Knasinski, A. (1987). A technique to calibrate industrial robots with experimental verification. In Proceedings. 1987 IEEE International Conference on Robotics and Automation, 4, 351-357.
[53] Intel Realsense depth camera D435i. Website: https://www.intelrealsense.com/
depth-camera-d435i/.

無法下載圖示 全文公開日期 2025/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE