簡易檢索 / 詳目顯示

研究生: Thuc Duy Nguyen
Thuc - Duy Nguyen
論文名稱: 交錯式升壓型功率因數修正轉換器之設計與研製
Design and Implementation of an Interleaved Boost PFC Converter
指導教授: 劉益華
Yi-Hua Liu
邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 劉宇晨
Dr. Yu-Chen Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 77
中文關鍵詞: 功率因數修正交錯式數位控制電流取樣修正責任週期前饋動態PID補償器
外文關鍵詞: Power Factor Correction, Interleaved, Digital Control, Current Sample Correction, Duty Ratio Feedforward, Adaptive PID Compensator
相關次數: 點閱:379下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率因數修正轉換器已經廣泛的應用在工業上,例如離線式交流-直流電源供應器。功率因數修正轉換器主要的任務是讓輸入電流以及輸入電壓同相位,用以減少虛功率以及高次電流諧波。在大功率的應用下,傳統的升壓型功率因數修正轉換器因為考慮成本以及簡單的應用,常使用類比IC進行控制,例如UC3854。然而,隨著國際組織嚴厲的電力品質要求規範,例如IEC 61000-3-2,類比控制器在功率因數修正轉換器會逐漸地被淘汰。因為微處理器的技術發展使得數位控制器更加便宜以及強大,數位控制器將會變得更有優勢以替代類比控制器。此外,數位控制器更有可能利用複雜的控制演算法提升功率因數修正轉換器的整體效率,以致於可以達成較高的功率因數、較低的總諧波失真、快速的動態響應以及更佳的系統保護。本論文提出了3kW交錯式升壓型轉換器之研製,該轉換器使用的控制器為UCD 3138。使用電流取樣修正、責任週期前饋和動態PID補償降低總諧波失真。實驗結果在所有的條件下,功率因數高於0.92、總諧波失真皆低於7%。


    Power Factor Correction (PFC) converters are widely used in industry as off-line AC-DC power supplies. Its main task is shaping the input current to be in phase and in shape with input voltage to minimize the reactive power drawn from AC mains and reduce the presence of high-order current harmonics. In high-power applications, conventionally, boost PFC converter is always controlled by analog ICs such as UC3854 because of its cost-effectiveness and ease of implementation. However, with more stringent power quality norms required by international organizations, such as IEC61000-3-2, the use of analog controller for PFC will gradually become obsolete. Instead, digital controllers will become dominant because of the development of microprocessor technology which allows them to become cheaper and more powerful. Moreover, it is possible to implement complex control algorithms to improve the overall performance of PFC system, so that higher power factor, lower total harmonic distortion, faster dynamic response, and better system protection can be achieved.
    In this thesis, a 3-kW interleaved boost converter is designed and implemented. This converter uses UCD3138 as its controller. Current Sample Correction, Duty Ratio Feedforward, and Adaptive PID Compensator methods are employed to reduce the total harmonic distortion. Experimental results showed that the output DC voltage is well-regulated, power factor (PF) is greater than 0.92, and total harmonic distortion (iTHD) is lower than 7% in all cases.

    摘要 i Abstract ii Acknowledgement iv Table of Contents v List of Figures viii List of Tables xi List of Abbreviations xii Chapter 1. Introduction 1 1.1. Background and Motivation 1 1.2. Organization of Thesis 3 Chapter 2. Literature Review 5 2.1. Definition of Power Factor 5 2.2. Interleaved Boost Power Factor Correction Topology 7 2.3. Modelling of PFC Control System with Average Current Control 9 2.3.1. Control Structure 9 2.3.2. Modelling of Current Loop 10 2.3.3. Modelling of Voltage Loop 15 Chapter 3. Digital Implementation of the 2-phase Interleaved PFC Converter 18 3.1. Digital Proportional-Integral-Derivative (PID) Compensator 18 3.2. Compensators Design 20 3.2.1. Introduction to Fusion Digital Power Designer 20 3.2.2. Design of Current Compensators 23 3.2.3. Design of Voltage Compensators 24 3.3. Methods for Improving iTHD 25 3.3.1. Current Sample Correction 25 3.3.2. Duty Ratio Feedforward for Mixed Conduction Mode (MCM) 28 3.3.3. Adaptive PID Method for Current Compensators 34 Chapter 4. Hardware and Firmware Implementation for the 3-kW 2-phase Interleaved PFC Converter 35 4.1. Converter Specifications 35 4.2. Components Design for 3-kW 2-phase Interleaved PFC 35 4.2.1. Design of Power Stage’s Components 35 4.2.2. Design of Measurement Circuitries 38 4.3. Introduction to the Integrated Digital Controller UCD3138 40 4.4. Hardware Design 41 4.4.1. Design of Power Stage 42 4.4.2. Design of Control Card 43 4.5. Firmware Design and Implementation 44 4.5.1. PFC Machine States 44 4.5.2. PFC Firmware Flow Diagrams 45 Chapter 5. Experimental Results 47 5.1. Experimental Setup 47 5.2. Experimental Waveforms 49 5.2.1. Experimental Waveforms without Using Any iTHD Improvements Method 49 5.2.2. Experimental Waveform with Sample Correction and Duty-Ratio Feedforward 51 5.2.3. Experimental Waveform with Adaptive PID Compensators for Current Loops 53 5.3. Measurement Data 55 Chapter 6. Conclusions and Future Work 58 6.1. Conclusions 58 6.2. Future Work 59 References 60

    [1] B. R. Lin and T. S. Hwang, “Single-phase rectifier with high power factor in continuous and discontinuous conduction mode,” in Proc. IEEE ISIE’95, 1995, pp. 421–426.
    [2] K. L. Lian and P. W. Lehn, "Harmonic analysis of single-phase full bridge rectifiers based on fast time domain method", ISIE, pp. 2608-2613, 2006.
    [3] J. Policarpo, G. de Abreu and A. E. Emanuel, "Induction motors loss of life due to voltage imbalance and harmonic: a preliminary study", 9th ICHQP.
    [4] J.P. Brozek, "The effects of harmonics on the overcurrent protection devices", IEEE Conference on Industry Applications Society Annual Meeting, vol. 2, pp. 1965-1967.
    [5] M. Shareghi, B.T. Phung, M.S. Naderi, T.R. Blackburn, E Ambikairajah, "Effects of current and voltage harmonics on distribution transformer losses," Condition Monitoring and Diagnosis (CMD), 2012 International Conference, 2012.
    [6] L. Cividino, "Power factor, harmonic distortion; causes, effects and considerations", Telecommunications Energy Conference, 1992. INTELEC'92., 14th International, pp. 506-513.
    [7] A. A. Hossam-Eldin and R.M. Hasan, "Study of the Effect of Harmonics on Measurements of the Energy Meters," in Middle East Power System Conference, Egypt, 2006.
    [8] Yasunobu Suzuki, Toru Teshima, Isao Sugawara and Akira Takeuchi, "Experimental studies on active and passive PFC circuits", Proc. IEEE 19th Int. Telecommunication Energy Conf. (INTELEC), pp. 571-578.
    [9] Yasuyuki Nishida, Shinichi Motegi, and Akeshi Maeda, "A Single-Phase Buck-Boost AC to DC Converter with High-Quality Input and Output Waveforms," Conf. Proc. of IEEE ISIE-1995, pp. 433-438 (Jul., 1995) (in Athens, Greece).
    [10] H. M. Huang , S. H. Twu , S. J. Cheng and H. J. Chiu, "A single-stage SEPIC PFC converter for multiple lighting LED lamps", Proc. 4th IEEE Int. Symp. Electron. Des., Test Appl., pp. 15-19, 2008.
    [11] S. Kam-Wah, L. Yim-Shu, "A novel high-efficiency fly-back power-factor-correction circuit with regenerative clamping and soft switching", IEEE Tran. Fundamental theory and applications, Vol. 47, No. 3,pp. 350-356, march, 2000.
    [12] K. Mahmud and T. Lei, "Power factor correction by PFC boost topology using average current control method", Proc. IEEE Global High Tech Congr. Electron., pp. 16-20, 2013.
    [13] Claudio Adragna, “L6561, Enhanced Transition Mode Power Factor Corrector”, Application Note AN966, STMicroelectronics, 2003.
    [14] [Kahou Wong, “19V/6.4A Universal Input AC-DC Adaptor with PFC Using NCP1603”, Application Note AND8207/D, ON Semiconductor, 2005.
    [15] Bill Andreycak, “Optimizing Performance in UC3854 Power Factor Correction Applications”, Design Node DN-39E, Texas Instruments, 1999.
    [16] Joel Turchi, “Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using the NCP1653”, Application Note AND8184/D, On Semiconductor, 2004.
    [17] Z.B. Ling, C.P. Deng, P.S. Ye, “The discussion on power factor definition in single phase system with arbitrary waveform”. Proceedings of the CSEE, 2003, 23(9): 39-43.
    [18] K. De Gussem, D. M. Van de Sype and J. A. Melkebeek, "Design issues for digital control of boost power factor correction converters", Proc. IEEE Symp. Ind. Electron., vol. 3, pp. 731-736, 2002 .
    [19] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein and M. R. Bass, "Averaged modeling of PWM converters operating in discontinuous conduction mode", IEEE Trans. Power Electron., vol. 16, no. 4, pp. 482-492, 2001 .
    [20] D. M. Van de Sype , K. De Gusseme , A. P. Van den Bossche and J. A. A. Melkebeek, "A sampling algorithm for digitally controlled boost PFC converter", IEEE Trans. Power Electron., vol. 19, no. 3, pp. 649-657, 2004.
    [21] K. De Gusseme, D. M. Van de Sype, A. P. Van den Bossche, and J. A. Melkebeek, “Digitally controlled boost power factor correction converters operating in both continuous and discontinuous conduction mode,” IEEE Trans. Ind. Electron., vol. 52, pp. 88-97, Fe. 2005.
    [22] D. M. Van de Sype , K. de Gusseme , A. P. M. Van den Bossche and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters", IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 108-115, 2005
    [23] Texas Instruments, “UCD3138 Highly Integrated Digital Controller for Isolated Power”, Datasheet, November 2013.

    QR CODE