簡易檢索 / 詳目顯示

研究生: 許厲生
Li-Sheng Hsu
論文名稱: 矽晶圓薄化與平坦化加工研究
Research on Silicon Wafers Thinning and Planarization
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 林原慶
Yuan-Ching Lin
蔡志成
Chih-Cheng Tsai
左培倫
Pei-Lun Tso
羅勝益
Sheng-Yi Lo
廖運炫
Yun-Hsuan Liao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 218
中文關鍵詞: 厚度變異偏差量晶圓薄化化學機械拋光平坦化材料移除率
外文關鍵詞: Material Removal Rate, Total Thickness Variation, Chemical Mechanical Planarization, Wafer Thinning
相關次數: 點閱:465下載:63
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

晶圓薄化與化學機械拋光平坦化廣泛應用在半導體製程方面,屬於超精密平坦化加工技術。在矽晶圓基板製造、封裝製程之晶圓薄化以及半導體IC製程之線寬縮減等需求下,晶圓薄化以及化學機械拋光平坦化能夠克服日益嚴苛的製程需求。本研究主要目的為建立晶圓薄化製程模式(Wafer Thinning Model, WTM)應用在矽晶圓厚度變異量(Total Thickness Variation, TTV)預測,以及拋光平坦化製程模式(Wafer Planarization Model, WPM)應用在矽晶圓及多層異質薄膜(Multi-Laminated Heterogeneous Film, MLHF)之材料移除率(Material Removal Rate, MRR)預測上。在WTM建構方面,本文以等效接觸長建構預測模式,模擬結果顯示主軸傾斜角變化對於載具與矽晶圓形貌最具影響,當修整主軸傾斜角參數(αc及βc)及晶圓薄化主軸傾斜角參數(αw及βw)角度相同時,預測值顯示矽晶圓TTV為0μm,20片晶圓薄化實驗值顯示介於1-3μm。在WPM建構方面,本研究以等效膜厚探討微觀表面之材料移除行為,模擬結果顯示MRR與有效磨粒數以及磨粒切深有關。在有效磨粒數分析方面,接觸面積隨著下壓力增加呈現非線性正相關,因此介於拋光墊粗度峰與晶圓表面基材之有效磨粒數亦隨接觸面積而變化。在磨粒切深分析方面,施加於磨粒之負載與拋光墊硬度呈現正相關,因此磨粒切深亦隨拋光墊硬度而變化。在預測值與實驗結果分析方面,以線性回歸方程式探討預測值與實驗結果之差異性,誤差原因在於WPM相關參數之估算誤差,包含磨粒數量估算、磨粒切深估算以及拋光墊硬度等因素,並針對WPM進行誤差因子修正。本研究所建立之製程模式可應用在大尺寸矽晶圓基板平坦化製程、矽晶圓薄化製程以及90nm以下化學機械拋光平坦化製程上之參考依據。


Wafer thinning and chemical mechanical planarization (CMP) process have been widely applied in integrated circuit (IC) fabrication. Due to demands of wafer production, backside thinning before IC packaging and reduction of line width in IC lithography, wafer thinning and CMP can efficiently achieve the tight specification of thinning and planarization. This research aims to develop the wafer thinning model (WTM) to predict the total thickness variation (TTV) and also the wafer planarization model (WPM) to predict material removal rate (MRR) of wafers and multi-laminated heterogeneous film (MLHF). For wafer thinning, this research has developed the WTM with effective contact length (ECL). Simulated results of WTM show that the estimated TTV=0μm if the spindle tilting angles of chuck dressing and those of wafer grinding are the same values. Experimental results of TTV of 20 ground wafers can achieve 1-3μm with current set-up in this research. For wafer planarization, this research has developed WPM with the equivalent film thickness to simulate the material removal rate (MRR). Simulated results show that the numbers of abrasive and depth of cutting are significantly parameters on MRR. Comparison of the difference of MRR between simulated results and experimental results show that the numbers of abrasive, depth of cutting and hardness of pad are the main contribution of the prediction errors. Results of this study can be applied to large dimension wafer with the developed WTM and WPM. Further research is to explore in ultra-thin wafer grinding and also the CMP for IC fabrication under 90nm linewidth.

目錄 中文摘要…………………………………………………………………. I 英文摘要………………………………………………………………… II 致謝…………………………………………………………………….. III 目錄……………………………………………………………………… V 圖目錄………………………………………………………………….. XI 表目錄………………………………………………………………... XVII 符號說明……………………………………………………………... XXI 第一章 緒論……………………………………………………………. 1 1-1、前言……………………………………………………. 1 1-2、矽晶圓平坦化製程應用與發展簡介…………………. 5 1-2-1、晶圓薄化製程應用…………………............... 5 1-2-2、化學機械拋光平坦化製程應用…………….. .6 1-3、研究動機與目的……………………………………... 13 1-4、本文架構……………………………………………...14 第二章 文獻回顧…………………………………………………….. 19 2-1、前言………………………………………………….. 19 2-2、輪磨及研光製程回顧…………………………….......20 2-2-1、脆性材料移除機制…………………………. 20 2-2-2、輪磨製程之材料移除模式…………………. 25 2-3、化學機械拋光平坦化製程回顧……………………... 36 2-3-1、接觸模式……………………………………. 36 2-3-2、探討壓力與相對速度對於材料移除率之影響 ……………………………………………… 40 2-3-3、探討磨料特性對於材料移除率之影響……. 45 2-3-4、探討拋光墊、磨料與晶圓之間交互作用影響 ………………………………………………. 48 2-3-5、化學液與矽晶圓表面基材之間的作用……. 50 2-4、文獻回顧一覽表……………………………………... 59 2-5、文獻回顧小結………………………………….......... 63 第三章 晶圓薄化製程模式建立…………………………………….. 65 3-1、晶圓薄化製程……………………………………….. 65 3-2、矽晶圓幾何理論模式建立………………………….. 71 3-2-1、座標軸定義…………………………………. 71 3-2-2、Chuck幾何模式建立……………………….. 72 3-2-3、矽晶圓幾何模式建立………………………. 74 3-3、製程參數對矽晶圓TTV影響分析…………………. 79 3-3-1、Chuck形貌模式建立………………………. 79 3-3-2、矽晶圓形貌模式建立………………………. 80 3-4、晶圓薄化製程模式小結…........................................... 87 第四章 拋光平坦化製程模式建立………………………………….. 89 4-1、材料移除機制………………………………………... 89 4-2、材料移除模式建立………………………………….. 92 4-2-1、拋光墊表面粗度峰與矽晶圓表面基材之接 觸模式建立……………………………….... 92 4-2-2、磨料與矽晶圓及拋光墊之接觸模式建立..... 95 4-2-3、拋光墊與矽晶圓之間有效磨料模式建立..... 98 4-2-4、材料移除理論模式整合…………………... 100 4-3、耗材與製程參數對於材料移除率之影響…………. 107 4-3-1、拋光墊上負載對與有效接觸面積之關係... 107 4-3-2、拋光液濃度與有效磨料數估算…………... 109 4-3-3、磨粒移除體積估算………………………... 110 4-3-4、材料移除率估算…………………………... 112 4-4、拋光平坦化製程模式小結…………………………. 118 第五章 晶圓薄化實驗……………………………………………… 119 5-1、實驗試片與耗材準備…………………………........... 119 5-2、晶圓薄化實驗設定…………………………………....121 5-2-1、精密輪磨設備…………………………....... 121 5-2-2、量測設備…………………………………... 121 5-2-3、實驗流程…………………………………… 121 5-3、晶圓薄化實驗結果………………………………....... 128 第六章 拋光平坦化實驗…………………………………………… 133 6-1、實驗試片與耗材準備………………………………... 133 6-1-1、試片準備…………………………………... 133 6-1-2、拋光液準備………………………………... 134 6-2、拋光平坦化實驗………………………....................... 144 6-2-1、實驗設備…………………………………… 144 6-2-2、量測設備…………………………………… 144 6-2-3、實驗規劃與步驟…………………………… 147 6-3、實驗結果……………………………………………... 154 第七章 結果與討論………………………………………………….. 161 7-1、晶圓薄化製程………………………………………... 161 7-1-1、主軸傾斜角對接觸長之影響……………... 161 7-1-2、修整主軸傾斜角參數對Chuck形貌之影響 ……………………………………………. 163 7-1-3、輪磨主軸傾斜角參數對矽晶圓厚度變異量之 影響………………………………………... 164 7-1-4、晶圓薄化製程模式與實驗結果比較……... 165 7-2、拋光平坦化製程……………………………………... 170 7-2-1、下壓力製程參數對於材料移除率之影響 …………………………………………….. 170 7-2-2、相對速度製程參數對於材料移除率之影響 …………………………………………….. 170 7-2-3、拋光液pH值對於材料移除率之影響…… 171 7-2-4、WPM模擬與實驗結果比較………………. 171 第八章 結論與未來研究方向……………………………………….. 177 8-1、結論…………………………………………………… 177 8-2、未來研究方向…………………………………………179 參考文獻………………………………………………………………. 181 附錄A、拋光墊粗度峰量測…………………………………………. 195 附錄B、拋光液平均粒徑量測………………………………………. 197 附錄C、薄膜材料機械性質測試…………………………………… .201 附錄D、拋光墊粗度峰數目評估…………………………………… 209 個人簡歷與著作………………………………………………………. 215

參考文獻
[1] Vandamme, R., Xin, Y., Pei, Z. J., “Method of Processing Semiconductor Wafers”, US Patent 6,114,245 (2000).
[2] Michael, A. F., “The Early days of CMP”, Solid State Technology, 81, (May 1997).
[3] Kulkarni, M., Desai, A., “Silicon Wafer Process Flow,” US Patent 6,294,469 (2001).
[4] Manfred, R., Gerald, W., “Wafer Thinning: Techniques for Ultra - thin Wafers”, Advanced Packaging, March, (2003).
[5] Klaus, D. B., “Method for Removing Protuberances at the Surface of a Semiconductor Wafer Using a Chemical-Mechanical Polishing Technique”, US Patent 4,671,851 (1987).
[6] Degarmo, E. P., Black, J. T, Ronald A. K., “Materials and Processes in Manufacturing”, John Wiley & Sons, Inc., Ninth Edition (2002).
[7] Chang, R., “Integrated CMP Metrology and Modeling With Respect to Circuit Performance”, Ph.D. Thesis, Graduate Division of the University of California, Berkeley (2004).
[8] International Technology Roadmap for Semiconductors, “Overalland Working Group Summaries”, (2006).
[9] Lawn, B. R., Evans, A. G., A Model for Crack Initiation in Elastic/ Plastic Indentation Fields”, Journal of Materials Science, Vol. 12, 2195 (1977).
[10] Lawn, B. R., Marshall, D. B., “Hardness, Toughness, and Brittleness: An Indentation Analysis”, Journal of the American Ceramic Society, Vol. 62, No. 7-8, 347 (1979).
[11] Lawn, B. R., Chantikul, P., “A Critical of Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements” Journal of the American Ceramic Society, Vol. 64, No. 9, 533 (1981).
[12] Lawn, B. R., Chantikul, P., “A Critical of Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method” Journal of the American Ceramic Society, Vol. 64, No. 9, 539 (1981).
[13] James, L., David, L., “The Crack-Initiation Threshold in Ceramic Materials subject to Elastic / Plastic Indentation”, Journal of Materials Science, Vol. 14, 1662 (1979).
[14] Marshall, D. B., Lawn, B. R., Evans, A. G., “Elastic / Plastic Indentation Damage in Ceramics: the Lateral Crack System”, Journal of the American Ceramic Society, Vol. 65, No. 11, 561 (1982).
[15] Hagan, J. T., Micromechanics of Crack Nucleation during Indentations”, Journal of Materials Science, Vol. 14, 2975 (1979).
[16] Hans, J. M., Basic Mechanisms and Modeling of Multi-Wire Sawing”, Advanced Engineering Materials, Vol. 6, No. 7, 501 (2004).
[17] Shibata, T., Shinohara, K., Uchiyama, T., Otani, M., “Lapping performance guide of poly-crystal diamond particles through morphological analysis”, Diamond and Related Materials Vol. 10, 376 (2001).
[18] Tsai, Y. L., Mecholsky, J. J., “Fractal Fracture of Single Crystal Silicon”, Journal of Materials Research, Vol. 6, No. 6, 1248 (1991).
[19] Chang, R., “Integrated CMP Metrology and Modeling with Respect to Circuit Performance”, Ph.D. Thesis, University of California, Berkelry (spring 2004).
[20] Tabor, D., “Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 251, No. 1266, 378 (1959).
[21] Bourne, N. K., “Shock-Induced Brittle Failure of Boron Carbide”, Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 458, No. 2024, 1999 (2002).
[22] Kim, D. E. and Suh, N. P., “Plastic Deformation of Silicon During Contact Sliding at Ambient Temperature”, Journal of Materials Science, Vol. 28, 3895 (1993).
[23] Atkins, A. G., Tabor, D., “Hardness and Deformation Properties of Solids at Very High Temperatures”, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, Vol. 292, No. 1431, 441 (1966).
[24] Lawn, B. R, Marshall, D. B., “Indentation of Brittle Materials,” Microindentation Tech. in Materials Science and Engineering, ASTM STP 889 (1986).
[25] Bifano, T. G., Dow, T. A., Scattergood, R. O., “Ductile Regime Grinding: A New Technology for Machining Brittle Materials,” Journal of Engineering for Industry, Transactions of the ASME, Vol. 113, 184 (1991).
[26] Ohmori, H., Itoh, N., “Grinding Characteristics of Hard and Brittle Materials by Fine Grain Lapping Wheels with ELID”, Journal of Materials Processing Technology, Vol. 62, No. 4, 315 (1996).
[27] Ohmori, H., Takahashi, I., Bandyopadhyay, B.P., “Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding”, Journal of Materials Processing Technology, Vol. 57, No. 3-4, 272 (1996).
[28] Qian, J., Li, W., Ohmori, H., “Precision internal grinding with a metal-bonded diamond grinding wheel”, Journal of Materials Processing Technology, Vol. 105, No. 1-2, 80 (2000).
[29] Bandyopadhyay, B.P., Ohmori, H., “The effect of ELID grinding on the flexural strength of silicon nitride”, International Journal of Machine Tools and Manufacture, Vol. 39, No. 5, 839 (1999).
[30] Katahira, K., Ohmori, H., Uehara, Y., Azuma, M., “ELID grinding characteristics and surface modifying effects of aluminum nitride (AlN) ceramics”, International Journal of Machine Tools and Manufacture, Vol. 45, No. 7-8, 891 (2005).
[31] Young, H. T., Liao, H. T., Huang, H. Y., “Novel method to investigate the critical depth of cut of ground silicon wafer”, Journal of Materials Processing Technology, Vol. 182, 157 (2007).
[32] Kelly, A., Macmillan N. H., “Strong Solids”, Oxford Science Publications, 3rd Edition (1986).
[33] Wing, N., The Transformation of Soft-Abrasive Wear into Hard-Abrasive Wear under the Effect of Frictional Heat, Tribology Transactions, Vol. 32, 85 (1989).

[34] Steve, K., “Grinding Technology”, Delmar Publishers, 2nd Edition (1994).
[35] Malkin, S., Ritter, J. E., “Grinding Mechanisms and Strength Degradation for Ceramics”, Journal of Engineering for Industry, Vol. 111, 167 (1989).
[36] Malkin, S., “Grinding Technology and Applications of Machining with Abrasives”, Society of Manufacturing Engineering Press, America (1989).
[37] Jahanmir S., Ramulu, M., Koshy, P., “Machining of Ceramics and Composites-Grinding of Advanced Ceramics”, Marcel Dekker Inc. (1999).
[38] Zhang, B., Fulun, Y., Jiexin, W., Zhenqi, Z., Richard, M., “Stock Removal Rate and Workpiece Strength in Multi-Pass Grinding of Ceramics”, Journal of Materials Processing Technology, Vol. 104, 178 (2000).
[39] Pei, Z. J., Billingsley, S.R., Miura, S., “Grinding Induced Subsurface Cracks in Silicon Wafers”, International Journal of Machine Tools & Manufacture, Vol. 39, 1103 (1999).
[40] Pei, Z. J., Alan, S., “Fine grinding of silicon wafers”, International Journal of Machine Tools & Manufacture, Vol. 41, 659 (2001).
[41] Pei, Z. J., “A Study on Surface Grinding of 300 mm Silicon Wafers”, International Journal of Machine Tools & Manufacture, Vol. 42, 385 (2002).
[42] Pei, Z. J., Alan, S., “Fine Grinding of Silicon Wafers: Designed Experiments”, International Journal of Machine Tools & Manufacture, Vol. 42, 395 (2002).
[43] Chidambaram, S., Pei, Z. J., Kassir, S., “Fine Grinding of Silicon Wafers: a Mathematical Model for the Chuck Shape”, International Journal of Machine Tools & Manufacture, Vol. 43, 739 (2003).
[44] Chidambaram, S., Pei, Z. J., Kassir, S., “Fine Grinding of Silicon Wafers: a Mathematical Model for Grinding Marks”, International Journal of Machine Tools & Manufacture, Vol. 43, 1595 (2003).
[45] Sun, W., Pei, Z. J., Fisher, G. R., “Fine Grinding of Silicon Wafers: a Mathematical Model for the Wafer Shape”, International Journal of Machine Tools & Manufacture, Vol. 44, 707 (2004).
[46] Sun, W., Pei, Z. J., Fisher, G. R., “Fine Grinding of Silicon Wafers: Machine Configurations for Spindle Angle Adjustments”, International Journal of Machine Tools & Manufacture, Vol. 45, 51 (2005).
[47] Sun, W., Pei, Z. J., Fisher, G. R., “Fine Grinding of Silicon Wafers: Effects of Chuck Shape on Grinding Marks”, International Journal of Machine Tools & Manufacture, Vol. 45, 673 (2005).
[48] Chen, C.-C. A., Hsu, L. S., “3D Geometric Model of Wafer Shape for Diamond Grinding of Silicon Wafers”, Journal of the Chinese Society of Mechanical Engineers, Vol. 27, No. 1, 123 (2006).
[49] Chen, C.-C. A., Hsu, L. S., “Estimating Total Thickness Variation of Wafer Grinding Process for Die Application”, Key Engineering Materials, Publishing Accepted, (2007).
[50] Chen, C.-C. A., Hsu, L. S., “A Process Model of Wafer Thinning by Diamond Grinding”, Journal of Manufacturing Processing Technology, Publishing Accepted, (2007).

[51] Timoshenko, S., Goodier, J. N., “Theory of Elasticity”, McGraw-Hill (1969).
[52] Greenwood, J. A., Williamson, J. B., “Contact of Nominally Flat Surfaces”, Proc. Royal Society London A, Vol. 295, 300 (1966).
[53] Zum, G., Karl, H., “Microstructure and Wear of Materials”, Elsevier, (1987).
[54] McCool, J. I., “Comparison of Models for the Contact of Rough Surfaces”, Wear, Vol. 107, 37 (1986).
[55] Preston, F. W., “The Theory and Design of Plate Glass Polishing Machine”, Journal of the Society of Glass Technology, Vol. 11, 214, (1927).
[56] Holmberg, K., Matthews, A., “Coating Tribology”, Elsevier Science Pub Co. Press, (1994).
[57] Tseng, W. T. and Wang, Y. L., “Re-examination of Pressure and Speed Dependence of Removal Rate during Chemical Mechanical Polishing Processes”, Journal of the Electrochemical Society, Vol. 144, L15, (1997).
[58] Tseng, W. T., Chin J. H., Kang L. C., “A Comparative Study on the Roles of Velocity in the Material Removal Rate During Chemical Mechanical Polishing”, Journal of the Electrochemical Society, Vol. 146, No. 5, 1952 (1999).
[59] Zhou, C., Shan, L., Hight, J. R., Ng, S. H., Paszkowski, A. J., Tichy, Danyluk, J., S., “Interfacial Fluid Pressure and Its Effects on SiO2 Chemical Mechanical Polishing”, Material Research Society Symposium Proceeding, Vol. 613, E7.1.1 (2000).
[60] Evans, D. R., “Slurry Admittance and Its Effect on Polishing”, Material Research Society Symposium Proceeding, Vol. 767, F5.1.1 (2003).
[61] Runnels, S. R., Eyman, L. M., “Tribology Analysis of Chemical Mechanical Polishing,” Journal of Electrochemical Society, Vol. 141, No. 6, 1698 (1994).
[62] Cook, L. M., “Chemical Process in Glass Polishing,” Journal of Non-Crystalline Solid, Vol. 120, 152 (1990).
[63] Liu, C. W., Dai, B. T., Tseng, W. T., Yeh, C. F., “Modeling of the Wear Mechanism during Chemical-Mechanical Polishing,” Journal of the Electrochemical Society, Vol. 143, No. 2, 716, (1996).
[64] Li, Y., Ramarajan, S., Hariharaputhiran, M., Her, Y. S., Babu, S. V., “Planarization of Cu and Ta Using Silica and Alumina Abrasives - A Comparison”, Material Research Society Symposium Proceeding, Vol. 613, E2.4.1 (2000).
[65] Lee, B. C., Duquette, D. J., Gutmann, R. J., “Synthesis of Model Alumina Slurries for Damascene Patterning of Copper”, Material Research Society Symposium Proceeding, Vol. 671, M2.7.1 (2001).
[66] Yano, H., Matsui,Y., Minamihaba, G., Kawahashi, N., Hattori, M., “High-performance CMP Slurry with Inorganic/Resin Abrasive for Al/Low k Damascene”, Material Research Society Symposium Proceeding, Vol. 671, M2.4.1 (2001).
[67] Lu, Z., Babu, S. V., Matijevic, E., “The Effects of Particle Adhesion in Chemical Mechanical Polishing”, Material Research Society Symposium Proceeding, Vol. 767, F3.5.1 (2003).
[68] Lee, J. W., Yoon, B. U., Hah, S., Moon, J. T., “A Planarization Model in Chemical Mechanical Polishing of Silicon Oxide using High Selective CeO2 Slurry”, Material Research Society Symposium Proceeding, 671, M5.3.1 (2001).
[69] Choi, K. S., Vacassy, R., Bassim, N., Singh, R. K., “Engineered porous and coated Silica particulates for CMP applications”, Material Research Society Symposium Proceeding, Vol. 671, M5.8.1 (2001).
[70] Chandrasekaran, N., Taylor, T., Sabde, G., “Effect of Ceria Particle - Size Distribution and Pressure Interactions in Chemo-Mechanical Polishing (CMP) of Dielectric”, Materials Material Research Society Symposium Proceeding, Vol. 767, F3.2.1 (2003).
[71] Tamilmani, S., Shan, J., Huang, W., Raghavan, S., Small, R., Shang, C., Scott, B., “Interaction Between Ceria and Hydroxylamine”, Materials Material Research Society Symposium Proceeding, Vol. 767, F3.3.1 (2003).
[72] Feng, X., Her, Y. S., Zhang, W. L., Davis, J., Oswald, E., Lu, J., Bryg, Freeman, V., S., Gnizak, D., “CeO2 Particles for Chemical Mechanical Planarization”, Materials Material Research Society Symposium Proceeding, Vol. 767, F3.8.1 (2003).
[73] Jindal, A., Hegde, S., Babu, S. V., “Chemical Mechanical Polishing Using Mixed Abrasive Slurries”, Electrochemical Solid-State Letters, Vol. 5, No. 7, G48 (2002).
[74] Zhou, C., Shan, L., Ng, S. H., Hight, R., Paszkowski, A. J., Danyluk, S., “Effects of Nano-scale Colloidal Abrasive Particle Size on SiO2 by Chemical Mechanical Polishing”, Materials Material Research Society Symposium Proceeding, Vol. 671, M1.6.1 (2001).
[75] Bielmann, M., Mahajan, U., Singh, R. K., “DYNAMIC CONTACT CHARACTERISTICS DURING CHEMICALMECHANICAL POLISHING (CMP)”, Materials Material Research Society Symposium Proceeding, Vol. 767, F1.10.1 (2003).
[76] Choi, W., Lee, S. M., Singh, R. K., “EFFECTS OF PARTICLE CONCENTRATION IN CMP”, Materials Material Research Society Symposium Proceeding, Vol. 671, M5.1.1 (2001).
[77] Yasunuga, N., “Effect of Solid State Reaction on Wear of Sapphire Sliding on Steel”, Journal of JSPE, Vol. 44, 65 (1978).
[78] Gutsche, H. W., Jerry, W. M., “Polishing of sapphire with colloidal silica”, Journal of the Electrochemical Society of Solid-State Science and technology, 136 (1978).
[79] Vora, H., “Mechano-chemical Polishing of Silicon Nitride”, Communications of the American Ceramic Society, 140 (1982).
[80] Suzuki, K., “Development of a New Mechano-Chemical Polishing Method with a Polishing Film for Ceramic Round Bars”, Annals of CIRP, Vol. 41, 339 (1992).
[81] Kikuchi, M., “Mechano-Chemical Polishing of Silicon Carbide Crystal Single Crystal with Chromium Oxide Abrasive”, Journal of Ceramic Society, 189 (1992).
[82] Tani, Y., “Development of High-Concentration Lapping Discs with Low Bonding Strength and Application to Mirror Finishing of Brittle Materials”, International Journal of JSME, Vol. 36, 264 (1993).
[83] Kuhnle, J., “Mechano-chemical Superpolishing of Diamond Using NaNO3 or KNO3 as Oxidizing Agents”, Journal of Surface science, Vol. 340, 16 (1995).
[84] Shu, L. S., Chen, C.-C. A., Lee, S. R., “Mechano-chemical polishing of silicon wafers”, Journal of Materials Processing Technology, Vol. 140, 373, (2003).
[85] 王彥松, “單晶α相氧化鋁晶圓基板平坦化加工研究”, 台灣科技大學機械工程研究所碩士論文,2003 年7 月。
[86] 古振瑭, “乾式機械化學拋光在單晶藍寶石晶圓之平坦化加工研究”, 台灣科技大學機械工程研究所碩士論文,2004 年7 月。
[87] Luo, J. F., Donfeld, D. A., “Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling,” IEEE, Transactions on Semiconductor Manufacturing, Vol. 14, No. 2, 112 (2001).
[88] Luo, J. F., Dornfeld, D. A., “Optimization of chemical mechanical planarization (CMP) from the viewpoint of consumable effects”, Journal of the Electrochemical Society, vol. 150, No. 12, G807 (2003).
[89] Luo, J. F., Donfeld, D. A., “Material Removal Regions in Chemical Mechanical Planarization for Submicron Integrated Circuit Fabrication: Coupling Effects of Slurry Chemicals, Abrasive Size Distribution, and Wafer-Pad Contact Area”, IEEE, Transactions on Semiconductor Manufacturing, Vol. 16, No. 1, 45 (2001).
[90] Fogler, H. S., “Elements of Chemical Reaction Engineering”, PHIPE Pub. Co., 3rd Edition, (1999).
[91] Jeng, Y. R., Huang, P. Y., “A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing,” Journal of Tribology, Vol. 127, No. 1, 190 (2005).
[92] Evans, D. R., Oliver, M. R., “Abrasive Contribution to CMP Friction”, Materials Material Research Society Symposium Proceeding, Vol. 867, W2.6.1 (2005).
[93] Park, K. H., Kimb, H. J., Changa, O. M., Jeong, H. D., “Effects of pad properties on material removal in chemical mechanical polishing”, Journal of Materials Processing Technology, Vol. 187, 73 (2007).
[94] Hariharaputhiran, M., Y. Li, Ramarajan, S., Babu, S. V., “Chemical Mechanical Polishing of Ta”, Electrochemical Solid-State Letters, Vol. 3, No. 2, 95 (2000).
[95] Kaufman, F. B., Thompson, D. B., Broadie, R. E., Jaso, M. A., Guthrie, W. L., Pearson, D. J., Small, M. B., Journal of Electrochemical Society, Vol. 138, No. 11, 3460 (1991).
[96] Kuo, H. S., Tsai, W. T., “Electrochemical Behavior of Aluminum
during Chemical-Mechanical Polishing in Phosphoric Acid Base Slurry”, Journal of Electrochemical Society, Vol. 147, No. 1, 149 (2000).
[97] Hariharaputhiran, M., Zhang, J., Ramarajan, S., Keleher, J. J., Li, Y., Babu, S. V. J., “Hydroxyl Radical Formation in H2O2 Amino Acid Mixtures and Chemical Mechanical Polishing of Copper”, Journal of Electrochemical Society, Vol. 147, No. 10, 3820 (2000).
[98] Al-Hinai, A. T., Osseo-Asare, K., “Corrosion of Copper in BTA Solutions”, Electrochemical Solid-State Letters, Vol. 6, No. 5, B23 (2003).
[99] Bielmann, M., Mahajan, U., Singh, R. K., Agarwal, P., Mischler, S., Rosser, E., Landolt, D., Materials Material Research Society Symposium Proceeding, Vol. 566, 97 (2000).
[100] Tamboli, D., Seal, S., Desai, V., Materials Material Research Society Symposium Proceeding, Vol. 566, 89 (2000).
[101] Kneer, E. A., Raghunath, C., Raghavan, S., Jeon, J. S., Journal of Electrochemical Society, Vol. 143, No. 12, 4095 (1996).
[102] Stein, D. J., Hetherington, D., Guilinger, T., Cecchi, J. L., Journal of Electrochemical Society, Vol. 145, No. 9, 3190 (1998).
[103] Babu, S. V., Li, Y., Jindal, A., “Chemical Mechanical Planarization of Cu and Ta: Role of different slurry Constituents”, Journal of Materials, Vol. 53, No. 6, 50 (2001).
[104] Lu, J., Garland, J. E., Petite, C. M., Babu, S. D., Roy, V., “ELECTROCHEMICAL STUDIES OF COPPER CHEMICAL MECHANICAL POLISHING MECHANISM: EFFECTS OF OXIDIZER CONCENTRATION”, Materials Material Research Society Symposium Proceeding, Vol. 767, F6.4.1 (2003).
[105] Gutmann, R. J., Steigerwald, J. M., You, L., Price, D. T., Neirynck, J., Duquette D. J., Murarka, S. P., “Chemical-Mechanical Polishing of Copper with Oxide and Polymer Interlevel Dielectrics”, Thin Solid Films, Vol. 270, No. 1-2, 596 (1995).
[106] Aksu, S., Doyle, F. M., “The Role of Glycine in the Chemical Mechanical Planarization of Copper”, Journal of Electrochemical Society, Vol. 149, No. 6, G352 (2002).

[107] 凃岐旭, “矽晶圓輪磨技術效能提昇之應用分析”, 台灣大學機械工程學研究所碩士論文, (2004)。
[108] 陳昇照, “銅晶圓化學機械研磨研磨墊花樣對研漿流場以及研磨效果之理論建立與實驗驗證”, 成功大學機械工程研究所碩士論文, 2003年7月。
[109] G&N Nano Grinder User’s Manual (2001).
[110] Yeruva, S. B., Park, C. W., Moudgil, B. M., “Modeling of Polishing Regimes in Chemical Mechanical Polishing”, Materials Material Research Society Symposium Proceeding, Vol. 867, W5.9.1 (2005).
[111] Anthony, C. F. C., “Nanoindentation”, Springer-Verlag New York, Inc. (2002).
[112] 陳文智, “硬脆機板機化學拋光加工模式分析研究”, 國科會大專生專題研究成果報告, NSC 92-2815-C-011-001-E, 台灣科技大學機械系, (2003).

QR CODE