簡易檢索 / 詳目顯示

研究生: 陳子謙
Zih-Cian Chen
論文名稱: 複合型無機聚合物砂漿之工程性質
Engineering Properties of Composite Geopolymer Mortar
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳君弢
Chun-Tao Chen
張建智
Jiang-Jhy Chang
詹穎雯
Yin-Wen Chan
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 151
中文關鍵詞: 無機聚合物複合材料砂漿乾縮鹼激發水玻璃模數爐石環境濕度偏高嶺土
外文關鍵詞: geopolymer, composite materials, mortar, shrinkage, alkali activated, water glass modulus, slag, ambient humidity, metakaolin
相關次數: 點閱:298下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以富含矽、鋁元素之爐石粉與偏高領土製作三類無機聚合物:A類複合型無機聚合物(70%偏高領土+30%爐石粉),B類複合型無機聚合物(30%偏高領土+70%爐石粉)及C類爐石無機聚合物(100%爐石粉),使用氫氧化鈉及矽酸鈉溶液作為激發基材活性之激發劑,其中,A類聚合物使用水玻璃模數(0.6、0.8及1.0)、鹼激發量濃度(11、13及 15%)與水固比(0.55、0.60及0.65),B類及C類聚合物分別使用0.7與0.6水玻璃模數、9%與7%激發量及0.45與0.33水固比,以探討無機聚合物漿體新拌性質(流度、初終凝及水化熱)(A類)及硬固工程性質(抗壓強度、動彈及動剪性質、超音波速、乾縮及熱傳性質)(A、B及C類),同時三類無機聚合物均以含砂率作變數(10,30及50%體積比),探討不同含砂率對無機聚合物砂漿硬固工程性質之影響。
    研究結果顯示:
    1. A類複合型無機聚合物漿體工作性隨鹼激發濃度與水固比之增加而提升,最佳流度值可達125 %,而隨著玻璃模數增加、鹼激發濃度之提升與降低水固比,會縮短凝結時間與提升水化熱溫度,凝結時間最短約1.8小時即完成終凝,水化溫度最高可達81 ℃。
    2. A、B與C類無機聚合物之動態彈性與剪力模數、超音波波速與熱傳導係數會隨著含砂量之增加而提升,分別增加15 %、96 %、74 %;11 %、110%、73 %;21 %、16 %、9 %;100%、48 %、65 %,但抗壓強度與乾縮量則會隨著含砂量之增加而下降,分別降低23 %、10 %、22 %;74 %、35 %、62 %。
    3. A類聚合物漿體為均勻收縮;B 及 C類無機聚合物漿體為不均勻乾縮。


    In this study, the slag and metakaolin which contain rich elements of silica and aluminium were used to manufacture three types of composite geopolymer: Type A (70% metakaolin and 30% slag), Type B (30% metakaolin and 70% slag) and Type C (100% slag). Both the sodium hydroxide and sodium silicate solution were used as the activators. Type A composite geopolymer uses three water glass moduli of 0.6, 0.8 and 1.0, three concentrations of alkali activator (11, 13 and 15%) and three water-to-solid ratios (0.55, 0.60 and 0.65), while Types B and C use the water glass moduli of 0.6 and 0.7, the e amount of alkali activator of 9% and 7%, and the water-to-solid ratios of 0.45 and 0.33, respectively. The engineering properties of flowability, initial and final setting times and polymerization temperature at the fresh state and the compressive strength, dynamic elastic and shear moduli, ultrasonic pulse speed, dry shrinkage and thermal properties at hardened for Type A composited geopolymer were studied. But only the engineering properties at hardened state for Types B and C were investigated.
    The results of study show that:
    1. The flowablity of Type A composite geopolymer increases with the increase of the concentration of activator and water-to-solid ratio to reach a best flowability ratio of 125%. The increase of water glass modulus and activator concentration and decrease of water-to-solid ratio tend to reduce the setting times and increase the polymerization temperature with a shortest final setting time of 1.8 hours and a highest temperature of 81oC.
    2. The dynamic elastic and shear moduli, ultrasonic pulse speed and thermal conductivity of Types A, B and C geopolymer increase with the increase of sand content with 15%, 96%, 74%, and 11%, 110%, 73%, and 21%, 16%, 9%, and 100%, 48%, 65%, respectively. But both the compressive strength and dry shrinkage decrease with the increase of sand content with 23%, 10%, 22%, and 74%, 35%, 62%, respective.
    3. Type A composite geopolymer exhibits a state of uniform shrinkage, but Types B and C show a state of uneven shrinkage.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 X 第一章緒論 1 1-1研究動機 1 1-2研究目的 2 1-3研究內容與流程 2 第二章 文獻回顧 4 2-1無機聚合物 4 2-1-1前言 4 2-1-2無機聚合物之發展 4 2-1-3無機聚合物之聚合反應機制 5 2-1-3-1聚合物反應機制 5 2-1-3-2無機聚合物之結構 9 2-1-4無機聚合物之形成影響因素 10 2-1-4-1鹼激發劑種類之影響 10 2-1-4-2鹼激發劑濃度之影響 12 2-1-4-3液固比之影響 14 2-1-4-4不同化合物與水玻璃模數比例之影響 16 2-1-4-5養護溫度、時間及方式之影響 18 2-1-4-6添加鹼激發劑方式之影響 20 2-1-5無機聚合物之體積穩定性 20 2-1-5-1乾縮發生機裡 20 2-1-5-2抑制乾縮之方式 22 2-1-6無機聚合物之優缺點 27 2-2爐石粉與高嶺土之物化性質 30 2-2-1爐石粉 30 2-2-1-1鹼性激發劑對爐石屬性之影響 31 2-2-1-2水玻璃模數對爐石屬性之影響 31 2-2-1-3爐石之比表面積對於聚合反應之影響 32 2-2-2高嶺土 33 第三章 試驗計畫 49 3-1試驗內容 49 3-2試驗材料 49 3-3試驗儀器與設備 51 3-4試驗變數及項目 54 3-4-1試體編號說明 54 3-4-2試驗流程說明 55 3-4-3試驗項目說明 56 3-5無機聚合物製作流程 57 3-5-1無機聚合物漿體製作 58 3-5-2無機聚合物砂漿製作 58 3-6試驗方法 59 3-6-1新拌性質試驗 59 3-6-2硬固性質試驗 60 第四章結果與討論 79 4-1偏高嶺土與爐石(M7:S3)複合型無機聚合物漿體試驗結果 79 4-1-1新拌性質試驗 79 4-1-1-1流度試驗結果 79 4-1-1-2漿體凝結時間試驗結果 80 4-1-1-3水化熱試驗結果 81 4-1-2硬固性質試驗 83 4-1-2-1抗壓試驗 83 4-1-2-2動態彈性與動態剪力模數試驗 85 4-1-2-3超音波波速試驗 87 4-1-2-4熱傳導係數試驗 88 4-1-2-5乾縮試驗 90 4-1-2-6微觀試驗-熱燈絲掃描式電子顯微鏡 92 4-2爐石無機聚合物砂漿與複合型無機聚合物砂漿試驗結果 93 4-2-1抗壓試驗 93 4-2-2動態彈性與動態剪力模數試驗 95 4-2-3超音波波速試驗 97 4-2-4熱傳導係數試驗 99 4-2-5乾縮試驗 100 第五章結論與建議 135 5-1結論 135 5-2建議 138 參考文獻 139

    1. 黃兆龍(1999),「混凝土性質與行為」,詹氏書局。
    2. http://www.moeaec.gov.tw/ 經濟部能源局。
    3. McLellan, B. C., R. P. Williams, J. Lay, A. Riessen, and G. D. Corder (2011) “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement,” Journal of Cleaner Production,19 ,1080-1090.
    4. Lloyd, R.R., J. L. Provis, and J. S. J. Van Deventer (2009),“Microscopy and microanalysis of inorganic polymer cemen. 2: The gel binder,” Journal of Materials Science, Vol. 44, No. 2, pp. 620 - 631.
    5. Dombrowski, K.A., and M. W. Buchwald (2007), “The influence of calcium content on structure and thermal performance of fly ash based geopolymers,” Journal of Materials Science, Vol. 42, No. 9, pp. 3033-3042.
    6. Geopolymer Institute、http://www.geopolymer.org
    7. Davidovits, J. (1994), “Geopolymer:man-made rock geosynthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91- 139.
    8. 陳志賢(2009),「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木工程研究所。
    9. Davidovits, J. (1982), “Mineral Polymers and method of making them,”USA Paten, No.4, pp. 349, 386.
    10. El-Didamony, H., A. A. Amer, and H. A. Ela-ziz, (2012) “Properties and durability of alkali-activated slag pastes immersed in sea water,” Ceramics International,38,3773-3780.
    11. Rashad, A.M., Y. Bai, P. A. M. Basheer, N. C. Collier, and N. B. Milestone (2012) “Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature,” Cement and Concrete Research,42,333-343.
    12. Shi, C., P. V. Krivenko, and D. Roy (2006), “Alkali-Activated Cements and Concrete,”Taylor &Francis Group.
    13. Komnitsas, K. A. (2011) “Potential of geopolymer technology towards green buildings and sustainable cities,” Procedia Engineering,21,1023-1032.
    14. Shi, C., P. V. Krivenko, and D.Roy (2006), Alkali-activated Cement and Concrete, London and New York: Taylor & Francis.
    15. Li, C., H. Sun, and L. Li (2010), “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cement,” Cement and Concrete Research, doi: 10.1016.
    16. 李元凱(2008),「偏高嶺土聚合膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    17. 林瑋倫(2009),「鹼激發爐石基膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    18. Xu, H., J. S. J. Van Deventer, and G. C. Luckey (2001), “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” Industrial Engineering Chemical Research, Vol. 40, pp. 3749-3756.
    19. Xu, H., and J. S. J. Van Deventer (2000) “The Geopolymerization of alumino-silicate minerals,” International Journal Minerals Process, Vol. 59, No. 3, pp. 247 -266.
    20. 黃立遠(2010),「飛灰基無機聚合物工程性質及應用之研究」,博士論文,國立台灣科技大學營建工程系。
    21. Van Jaarsveld, J. G. S., J. S. J. Van Deventer, and L. Lorenzen (1997), “The potential use of geopolymeric materials to immobilize toxic metals: Part I,” Theory and application, Minerals Engineering, Vol. 10, No.7, pp. 659-669.
    22. Davidovits, J. (1999), “Chemistry of geopolymeric systems terminology,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Geopolymere, Saint-Quentin, France, pp. 9-40.
    23. Barbosa, V. F., K. J. D. MacKenzie, and C. Thaumaturgo (2000) “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers,” International Journal of Inorganic Materials, Vol. 2, No.4, pp. 309–317.
    24. Sun, W., Y. S. Zhang, and W. Lin, and Z. Y. Liu (2004) “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM,” Cement and Concrete Research, Vol. 34, pp. 935–940.
    25. Duxson, P., A. Fernandez-Jimenez, and J. L. Provis, and G.C. Lukey and A. Palomo, and J. S. J. Van Deventer (2007), “Geopolymer technology: the current state of the art,” Journal of Material Science, Vol. 42, No.9, pp. 2917-2933.
    26. Davidovits, J. (2005), “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry,” Geopolymer, Green Chemistry and Sustainable Development Solutions, edited by: Davidovits, J., Institut Geopolymere, Saint-Quentin, France, pp. 9-15.
    27. Xu, H., and J. S. J. Van Deventer (1999), “The geopolymerisation of natural alumino-silicates,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Geopolymere, Saint-Quentin, France, pp. 43–64.
    28. Shi, C., and R. L. Day (1996), “Some factors affecting early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 26, No. 3, pp. 439-447.
    29. Shi, C., and R. L. Day (1995), “A calorimetric study of early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 25, No.6, pp. 1333 – 1346
    30. Bilim, C., C. D. Atis (2012) “Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag,” Construction and Building Materials,28,708-712.
    31. Pacheco-Torgal, F., Z. Abdollahnejad, A. F. Camoes, M. Jamshidi, and Y. Ding (2012) “Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?,” Construction and Building Materials,30,400-405.
    32. Phair, J.W., and J. S .J. Van Deventer (2002), “Effect of silicate activator PH on microstructural characteristics of waste-based geopolymers,” international Journal Minerals Process, Vol. 66, No. 1-4, pp. 121-143.
    33. Glukivski, V.D. (1979), Alkali-earth binder and concrete produced with them, USSR, Russian , Visheka shkola, Kiev.
    34. 楊仁佑(2011),「低溫養護對爐石基無機聚合物工程性質之影響」,碩士論文,國立台灣科技大學營建工程系。
    35. 陳冠宇(2010),「鹼激發爐石基膠體配比因子對其工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    36. Komnitasa, K., D. Zaharaki, and V. Perdikatsis, (2009), “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,”Journal of Hazardous Materials, Vol. 161, No. 2-3, pp. 760–768.
    37. Brough, A.R., M. Holloway, J. Sykes, and A. Atkinson (2000), “Sodium silicate-based alkali-activated slag mortars Part II: The retarding effect of additions of sodium chloride or malic acid,” Cement and Concrete Research, Vol. 30,No. 9, pp. 1375 - 1379.
    38. 馬鴻文、凌發科、楊靜、王剛(2002),「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報,北京,第二十七卷,第五期,第576 - 583頁。
    39. 鄭娟榮,周同和,劉麗娜(2007),「鹼-偏高嶺石-礦渣系膠凝材的凝結硬化性能研究」,矽酸鹽通報,鄭州,第二十六卷,第六期,第1064 - 1067頁。
    40. Ravikumar, D., N. Neithalath (2012) “Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH,” Cement & Concrete Composites, 34,809-818.
    41. Bernal, S. A., R. M. Gutierrez, and J. L. Provis (2012) “Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends,” Construction and Building Materials,33,99-108.
    42. Wang, J., X. L. Wu, , J. X. Wang, C. Z. Liu, , Y. M. Lai, , Z. K. Hong, and J. P. Zheng, (2012) “Hydrothermal synthesis and characterization of alkali-activated slag–fly ash–metakaolin cementitious materials,” Microporous and Mesoporous Materials,155,186-191.
    43. Garcia-Lodeiro, A. Palomo, A. Fernandez-Jimenez, and D. E. Macphee (2011) “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O,” Cement and Concrete Research, 41, 923-931.
    44. Phair, J. W., and J. S. J. Van Deventer (2001), “Effect of silicate actvator pH on the leach and material characteristics of waste-based inorganic polymers,” Minerals Engineering, Vol. 14, No. 3, pp. 289–304.
    45. 付興華、陶文宏、孫鳳金(2008),「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,濟南,第二期,第6-10頁。
    46. Silva, P.D., K. Sagoe – Crenstil, and V. Sirvivatnanon (2007), “Kinetics of geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, Vol. 37, No. 4, pp. 512 - 518..
    47. Bakharev, T., J. G. Sanjayan, and Y. B. Cheng (1999), “Effect of Elevated temperature curing on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 10, pp. 1619-1625..
    48. Ravikumar, D., S. Peethamparan, and N. Neithalath (2010), “Structure and strength of NaOH activated concrete containing fly ash or GGBFS as the sole binder,” Cement and Concrete Composites, Vol. 32, pp. 399-410.
    49. Kong, D. L. Y., and J. G. Sanjayan (2008), “Damage behavior of geopolymer composite exposed to elevated temperatures,” Cement and Concrete Research, Vol. 30, No. 10, pp. 986-991.
    50. Swanepoel, J. C. and C. A. Strydom (2002), “Utilisation of fly ash in a geopolymeric material,l” Applied Geochemistry, Vol. 17, No. 6, pp. 1143-1148.
    51. Rashad, A. M., S. R. Zeedan, , and H. A. Hassan (2012), “A preliminary study of autoclaved alkali-activated slag blended with quartz powder,” Construction and Building Materials,33,70-77.
    52. 戴詩潔(2005),「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系。
    53. Aydın, S., and B. Baradan (2012), “Mechanical and microstructural properties of heat cured alkali-activated slag mortars,” Materials and Design,35,374–383.
    54. Chi, M. (2012), “Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete,” Construction and Building Materials,35,240-245.
    55. Fernandez-Jimenez, A., J. G. Palomo, and F. Puertas (1999), “Alkali-activated slag mortars mechanical strength behavior,” Cement and Concrete Composites, Vol. 29, No. 8, pp. 1313-1321.
    56. Wang, S.D., K. L. Scrivener, and P. L. Pratt (1994), “Factors affecting the strength of alkali-activated slag,” Cement and Concrete Research, Vol. 24, No. 6, pp. 1033–1043.
    57. Wang, S.D., X. C. Pu, and K. L. Scrivener, and P. L. Pratt (1995), “Alkali - activated cement and concrete. A review of properties and problems,” Advances in Cement Research, Vol. 7, pp. 93-102.
    58. Shi, C. (1996), “Strength, pore structure and permeability of alkali - activated slag mortars,” Cement and Concrete Research, Vol. 26, No. 12, pp. 1789-1799.
    59. Collins, F., and J. G. Sanjayan (2000), “Effect of pore size distribution on drying shrinkage properties of alkali - activated slag concrete, ” Cement and Concrete Research, Vol. 30, No. 9, pp. 1401-1406.
    60. Bakharev, T., J. G. Sanjayan, and Y. B. Chen (1999), “Alkali activation of Australian slag cements,” Cement and Concrete Research, Vol. 29, No. 1, pp. 113-120.
    61. 李宜桃(2003),「鹼活化還原渣收縮及抑制方法之研究」,碩士論文,國立中央大學土木工程研究所。
    62. Palacios, M., and F. Puertas (2007), “Effect of shrinkage-reducing admixtures on the properties of alkali - activated slag mortars and pastes,”Cement and Concrete Research, Vol.37, No. 3, pp. 691 - 702.
    63. Cengiz Duran Atis, Cahit Bilim, Ӧzlem Celik, and Okan Karahan (2009),Influence of activator on the strength and drying shrinkage of alkali - activated slag mortar, Construction and Buiding Materials, Vol. 23, pp. 548 - 555.
    64. Bakharev, T., J. G. Sanjayan, Y. B. Cheng (2000), “Effect of admixtures on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 30, No. 9, pp. 1367 - 1374.
    65. 邱俊萍(2006),「利用高爐爐渣製成無機聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系。
    66. Davidovits, J. (1994), “Global warming impact on the cement and aggregates industries,” Published in world resource review, Vol. 6, No. 2.
    67. 金漫彤(2005),「土壤聚合物固化重金屬技術及終產物研究」,碩士論文,浙江大學。
    68. Davidovits, J. (2008), Geopolymer chemistry and applications, France, Saint-Quentin, Institut Geopolymere, pp. 384 –385.
    69. Davidovits, J. (1999), Fire proof Geopolymeric, St.Quentin, France Cordi-Geopolymere, pp. 165 - 170.
    70. Phair, J.W., J. S. Van Deventer, and J. J. D. Smith (2004), “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers,” Applied Geochemistry, Vol. 19, No. 3, pp. 423–434.
    71. 林孟曄(2006),「利用燃煤底灰製成無機聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系所。
    72. Malolepszy, J. and J. Deja (1995), “Effect of heavy metals immobilization on properties of alkali-activated slag mortars,” proceedings of the 5th International Concrete on the Use of Fly Ash, Silica Fume, Slag ş Natural Pozzolans in Concrete,SP-153, Farmington Hills, MI, 1087-1102.
    73. Siemer, D. D. (2004), “Hydroceramic Concrete, Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes (edited by Spence, R. and Shi, C.),” CRC Press, Boca, Florida .
    74. Shi, C., and R. L. Day (1996), “Selectivity of alkaline activators for the activation of slag,” Cement, Concrete and Aggregates, Vol. 18, No. 1, pp. 8-14.
    75. Shi, C., and Y. Li (1989), “Investigation on some factors affecting the characteristic of alkali-phosphorus slag cement,” Cement and Concrete Research, Vol. 19,No.4, pp. 527 -533.
    76. Nakamura, N., M. Sakai, K. Koibuchi, and Y. Iijima (1986), Properties of high-strength concrete incorporating very finely ground granulated blast furnace slag. 2nd international Conference on the Use of Fly Ash, Silica Fume, Slag ş Natural Pozzolans in Concrete, ACI SP-91, 1361-1380.
    77. Sato, K., E. Konishi, and K. Fukaya (1986), Hydration of Blast Furnace Slag Particle. 8th international Congress on the Chemistry of Cement, Rio de Janeiro, Brazil, 4, 96-103.
    78. Osbaeck, B. (1989), Ground blast furnace slag grinding methods, particle size distribution, and properties. 3rd International Conference on the Use of Fly Ash, Silica Fume, Slag ş Natural Pozzolans in Concrete, ACI SP-114, 1239-1263.
    79. 黃伯齡(1987),礦物熱差分析鑑定手冊,科學出版社,北京,第516-518頁。
    80. Klein, C., and C. S. Hurlbut,Jr. (2000), 原著,黃怡禎 譯,礦物學(Manual of Mineralogy 21st edition),地球科學文教基金會,第534頁。
    81. 韓敏芳(2004),非金屬礦物材料製備與工藝,化學工業出版社,北京,第208-215頁。
    82. Kaps, C., and A. Buchwald “Property controlling influences on the generation of geopolymeric based on clay,” Geopolymer 2002 International Conference, Melbourne, Australia, CD-ROM.
    83. Van Jaarsveld, J. G. S., J. S. J. Van Deventer, and A. Schwartzman (1999), “The potential use of geopolymeric materials to immobilise toxic metals :Parts Ⅱ. Minerals and characteristics,” Minerals Engineering, Vol. 12, NO. 1, pp.75-91.
    84. 陳秋艷、那琼(2004),「偏高嶺土在我國的潛在應用」,礦業研究與開發,第二十四卷,第四期,第31-33頁。
    85. Chakraborty, A. K. (2003), “DTA study of preheated kaolinite in the mullite formation region”, Thermochimica Acta , Vol. 398 , No.2 , pp.203-209.
    86. 曹德光、蘇達根、楊占印、宋國勝(2004),「偏高嶺石的微觀結構與鍵合反應能力」,礦物學報,第二十四卷,第四期,第366-372頁。
    87. Davidovits, J. (1985), “Early high-strength mineral polymer, United States Patent,” 4,509,985.
    88. Yip, C. K., G. C. Luckey, J. S. J. Van Deventer (2005), “The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation,” Cement and Concrete Research, 35,1688-1697.
    89. Phair, J. W., J. S. J. Van Deventer (2001) “Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer,” Minerals Engineering, 14(3), 289-304.
    90. 代新祥(2002),鹼激活土聚水泥的製備、結構與性能,博士論文,華南理工大學。
    91. 金漫彤、樓梅曉、韓懁芬 (2006),摻加礦渣的土壤聚合物對重金屬的固化,浙江工業大學學報,第34卷第6期,599-602。
    92. 蔡宗翰(2011),「綠水泥與綠水泥混凝土之性質探討」,碩士論文,國立台灣科技大學營建工程系。
    93. 成立(2004),「三種鹼激發膠凝材料的反應機理及其產物」,荊門職業技術學院學報,第19卷第6期,第92~95。
    94. 蘇榮章(2003),「鹼活化爐石粉砂漿火害研究」,碩士論文,國立雲林科技大學營建工程系。

    QR CODE