簡易檢索 / 詳目顯示

研究生: 黃亭蓁
Ting-Chen Huang
論文名稱: 銅摻雜二氧化鈦為主之觸媒其光催化產氫及機制探討
Photocatalytic hydrogen production and its mechanism of Copper-doped titanium dioxide-based photocatalysts
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 柯文政
Wen-Cheng Ke
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 117
中文關鍵詞: 二氧化鈦摻雜聯胺還原複合材料
外文關鍵詞: Titanium dioxide, doping, thermal hydrazine reduction, composite
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以快速析出製程出二氧化鈦奈米球狀粉體,並對其衍生光觸媒進行光催化產氫的研究與探討。實驗中,將透過不同比例的Cu元素摻雜合成出Cu-TiO2-n光觸媒,可得具有最佳產氫率的Cu-TiO2-6光觸媒。之後在此光觸媒為基底再分別複合四種不同類型之材料(BiOBr、rGO、Ag、Pt)合成出複合光觸媒,並分別探討其複合光催化劑對於光催化產氫效率之影響。為了解本實驗之光觸媒之物理與化學現象,將利用XRD、SEM、EDS、XPS、TEM進行分析,光學與其他特性也將利用DRS、PL、Raman、EPR、EIS、MS、CV分析其結果,而光催化產氫量則使用GC儀器進行量測。
    實驗第一部分是以不同比例之銅元素摻雜於二氧化鈦中。製備方式係快速析出法,將氯化銅前驅物直接加入於二氧化鈦前驅物四正丁醇钛的異丙醇溶液中均勻的攪拌,然後加入大量的水並持續攪拌4小時,之後使用酒精清洗並乾燥後,將其材料進行450度2小時的退火後而製備完成。第二部分是以最佳產氫量之Cu-TiO2-6光催化劑為主體,分別複合四種材料後進行光催化產氫量之比較與分析。
    從研究中可以發現銅的摻雜雖然大大的提升光催化產氫效率,但要再製備出複合材料進行修飾與增進其光催化活性的效果都並不佳,添加從文獻中參考之材料,對此光催化劑都沒有能提升其光催化產氫效果,只有在使用Pt光催化助劑,才有明顯提升與幫助。
    本實驗之複合光催化劑最佳效果之條件係添加2% Pt於Cu-TiO2-6光催化劑上合成出2% Pt/Cu-TiO2-6,其光催化產氫率最高達4934 μmol/h·g。


    This research prepared titanium dioxide nano-spherical powder by a new process method for investigating its derived photocatalysts for hydrogen evolution. Cu-TiO2-n photocatalyst was synthesized by adding different proportions of Cu elements, and the best hydrogen production rate was Cu-TiO2-6 photocatalyst. Afterward, four different types of materials (BiOBr, rGO, Ag, Pt) were added to the Cu-TiO2-6 photocatalyst as the substrate to synthesize a composite photocatalyst, and the effects of the composite photocatalyst on the photocatalytic efficiency were discussed respectively. To understand the physical and chemical phenomena of the photocatalyst in this experiment, XRD, SEM, EDS, XPS, and TEM will be used; optical and other characteristics will be analyzed by DRS, PL, Raman, EPR, EIS, MS, CV; and the amount of hydrogen produced by photocatalytic was measured using a GC instrument.
    The first stage of the experiment was prepared by the rapid precipitation method, which involved adding different proportions of the Copper element to titanium dioxide. The Copper precursor of Copper chloride was directly added into the titanium precursor of titanium n-butoxide in an isopropanol solution and stirred evenly, then added a large amount of water and kept stirring for 4 hours, and finally washed and dried with alcohol. The photocatalyst was then annealed at 450°C for 2 hours. The second stage compares and analyzes the photocatalytic hydrogen production after adding four kinds of materials to the Cu-TiO2-6 photocatalyst with the best hydrogen production.
    The research results show that although adding Copper significantly improves the photocatalytic hydrogen production efficiency, modifying the prepared composite material to enhance its photocatalytic activity is not good. Adding the materials referenced in the literature cannot improve this photocatalyst's photocatalytic hydrogen production effect, and only using a Pt photocatalytic accelerator can significantly enhance and help.
    The best effect condition of the composite photocatalyst in this experiment is to add 2% Pt to the Cu-TiO2-6 photocatalyst to synthesize 2% Pt/Cu-TiO2-6, and the photocatalytic hydrogen production rate is as high as 4934 μmol/h·g.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 ix 圖目錄 x 第一章、緒論 1 1.1 前言 1 1.2 研究動機和目的 3 第二章、文獻回顧與原理 4 2.1 光催化水分解產氫原理 4 2.2 Pt@RGO-TiO2複合光催化劑 5 2.3 Fe2O3/TiO2 p-n分層結構 8 2.4 TiO2/BiOBr p-n異質結構複合半導體 10 2.5 Metal-TiO2 13 2.6 M/TiO2 17 2.7 Cu2O/TiO2 20 2.8 Cu/TiO2/SrTiO3 24 第三章、實驗方法與步驟 28 3.1 實驗材與規格 28 3.2 實驗設備 29 3.2.1 分析電子天平 29 3.2.2 加熱磁石攪拌器 29 3.2.3 桌上型離心機 29 3.2.4 烘箱 29 3.2.5 高溫爐 29 3.2.6 超音波震盪機 29 3.2.7 鐵氟龍反應瓶 30 3.2.8 汞氙燈 30 3.3 實驗步驟 31 3.3.1 製備Cu-TiO2 31 3.3.2 製備四種BiOBr、rGO、Ag、Pt與Cu-TiO2-6的複合光催化劑 32 3.4 分析儀器介紹與量測參數 33 3.4.1 高解析場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FESEM) 33 3.4.2 X光繞射技術 (High Power X-Ray Diffractometry, XRD) 34 3.4.3 顯微拉曼光譜儀 (Micro-Raman Spectrometer) 36 3.4.4 電子順磁共振光譜儀 (electron paramagnetic resonance, EPR) 37 3.4.5 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 39 3.4.6 紫外光-可見光/近紅外光分析儀 (UV-Vis/NIR Spectrophotometry) 40 3.4.7 光致發光光譜儀 (Photoluminescence, PL) 42 3.4.8 場發射穿透式電子顯微鏡附能量分散光譜儀(Field Emission Gun Transmission Electron Microscopy, FEG-TEM+EDS) 43 3.4.9 氣相層析儀 (Gas chromatography, GC) 44 3.4.10 電化學阻抗頻譜法 (Electrochemical Impedance Spectroscopy, EIS) 46 3.4.11 莫特-蕭特基(Mott-Schottky)圖譜分析 48 3.4.12 循環伏安法(Cyclic Voltammetry, CV) 49 第四章、結果與討論 50 4.1 添加不同比例銅所得Cu-TiO2-n (n= 0、2、4、6、8、10%)光觸媒的特性探討與產氫能力 51 4.1.1 添加不同比例銅所得Cu-TiO2-n光觸媒的SEM及EDS分析 51 4.1.2 添加不同比例銅所得Cu-TiO2-n光觸媒其XRD分析 53 4.1.3 添加不同比例銅所得Cu-TiO2-n光觸媒其拉曼光譜分析 55 4.1.4 添加不同比例銅所得Cu-TiO2-n光觸媒其DRS及PL分析 56 4.1.5 添加不同比例銅所得Cu-TiO2-n光觸媒其電化學阻抗分析 59 4.1.6 添加不同比例銅所得Cu-TiO2-n光觸媒其Mott-Schottky圖譜分析 60 4.1.7 添加不同比例銅所得Cu-TiO2-n光催化劑其進行產氫率分析 61 4.1.8 具有最佳產氫率的Cu-TiO2-6光觸媒其TEM表面組織與元素組成分析 63 4.1.9 具最佳產氫率Cu-TiO2-6光觸媒其XPS表面組成元素能態分析 66 4.2 第二相複合於Cu-TiO2-6的產氫率及特性探討 69 4.2.1 不同種材料添加於Cu-TiO2-6合成複合光觸媒與產氫率分析 69 4.2.2 TiO2、Cu-TiO2-6、2% Pt/Cu-TiO2-6光觸媒進行電子順磁共振分析 75 4.2.3 複合2% Pt於P25-TiO2、TiO2和Cu-TiO2-6光觸媒其XRD分析 76 4.2.4 複合2% Pt於P25-TiO2、TiO2和Cu-TiO2-6光觸媒其拉曼光譜分析 79 4.2.5 複合2% Pt於P25-TiO2、TiO2和Cu-TiO2-6光觸媒其DRS及PL分析 80 4.2.6 複合2% Pt於P25-TiO2、TiO2和Cu-TiO2-6光觸媒其電化學阻抗分析 83 4.2.7 複合2% Pt於P25-TiO2、TiO2和Cu-TiO2-6光觸媒其活性表面積圖譜分析 84 4.2.8 複合2% Pt於P25-TiO2、TiO2和Cu-TiO2-6光觸媒之SEM及EDS分析 87 4.2.9 將最佳的條件之2% Pt/Cu-TiO2-6光觸媒其4次重複循環測試 89 4.2.10 2% Pt/Cu-TiO2-6經光催化產氫重複循環測試後,其SEM與XRD分析 90 4.2.11 添加2% Pt於P25-TiO2、TiO2和Cu-TiO2-6光觸媒其Mott-Schottky圖譜分析 91 4.2.12 本研究TiO2、Cu-TiO2-6與2% Pt/Cu-TiO2-6光觸媒產氫機制 95 第五章、結論 96 參考文獻 98

    1. C. Acar, I. Dincer, G. F. Naterer, Review of photocatalytic water-splitting methods for sustainable hydrogen production, International Journal of Energy Research, 40 (2016) 1449-1473.
    2. M. A. Rosen, K. F. Seama, The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems, Energy, Ecology and Environment, 1 (2016) 10-29.
    3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
    4. S. Yu, H. J. Yun, Y. H. Kim, J. Yi, Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation, Applied Catalysis B: Environmental, 144 (2014) 893-899.
    5. D. B. Pal, A. K. Rathoure, A. Singh, Investigation of surface interaction in rGO-CdS photocatalyst for hydrogen production: an insight from XPS studies, International Journal of Hydrogen Energy, 46 (2021) 26757-26769.
    6. S. Chen, Y. Qi, Q. Ding, Z. Li, J. Cui, F. Zhang, C. Li, Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation, Journal of Catalysis, 339 (2016) 77-83.
    7. A. Hofmann, M. Weiss, J. Timm, R. Marschall, Perovskite‐type oxynitride nanofibers performing photocatalytic oxygen and hydrogen generation, Advanced Materials Interfaces, 8 (2021) .
    8. M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews, 11 (2007) 401-425.
    9. K. Maeda, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, The Journal of Physical Chemistry C, 111 (2007) 7851-7861.
    10. T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song , S. L. Suib, Photocatalytic water splitting-the untamed dream: a review of recent advances, Molecules, 21 (2016).
    11. Y. Shinde, S. Wadhai, A. Ponkshe, S. Kapoor, P. Thakur, Decoration of Pt on the metal free RGO-TiO2 composite photocatalyst for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant β blocker, International Journal of Hydrogen Energy, 43 (2018) 4015-4027.
    12. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806-4814.
    13. R. K. Nainani, P. Thakur, Facile synthesis of TiO2-RGO composite with enhanced performance for the photocatalytic mineralization of organic pollutants, Water Science and Technology, 73 (2016) 1927-1936.
    14. X. B. Yan, B. K. Tay, Y. Yang, Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 sol, The Journal of Physical Chemistry B, 110 (2006) 25844-25849.
    15. S. Zhu, F. Yao, C. Yin, Y. Li, W. Peng, J. Ma, D. Zhang, Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation, Microporous and Mesoporous Materials, 190 (2014) 10-16.
    16. Q. Chi, G. Zhu, D. Jia, W. Ye, Y. Wang, J. Wang, T. Tao, F. Xu, G. Jia, W. Li, P. Gao, Built-in electric field for photocatalytic overall water splitting through a TiO2/BiOBr p-n heterojunction, Nanoscale, 13 (2021) 4496-4504.
    17. D. Zhang, J. Li, Q. Wang, Q. Wu, High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity, Journal of Materials Chemistry A, 1 (2013) 8622-8629.
    18. U. Balachandran, N. G. Eror, Raman spectra of titanium dioxide, Journal of Solid State Chemistry, 42 (1982) 276-282.
    19. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, A. D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chemistry of Materials, 11 (1999) 771-778.
    20. H. Li, F. Deng, Y. Zheng, L. Hua, C. Qua, X. Luo, Visible-light-driven Z-scheme rGO/Bi2S3-BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr(VI) reduction, Environmental Science: Nano, 6 (2019) 3670-3683.
    21. A. T. Montoya, E. G. Gillan, Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2, ACS Omega, 3 (2018) 2947-2955.
    22. L. Clarizia, G. Vitiello, G. Luciani, I. D. Somma, R. Andreozzi, R. Marotta, In situ photodeposited nanoCu on TiO2 as a catalyst for hydrogen production under UV/visible radiation, Applied Catalysis A: General, 518 (2016) 142-149.
    23. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, R. P. V. Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography, Nano Letters, 7 (2007) 1947-1952.
    24. J. Yu, Y. Hai, B. Cheng, Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification, The Journal of Physical Chemistry C, 115 (2011) 4953-4958.
    25. X. Zhou, Z. Luo, P. Tao, B. Jin, Z. Wu, Y. Huang, Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 nanospheres modified porous g-C3N4, Materials Chemistry and Physics, 143 (2014) 1462-1468.
    26. W. T. Chen, A. Chan, D. Sun-Waterhouse, T. Moriga, H. Idriss, G. I. N. Waterhouse, Ni/TiO2: a promising low-cost photocatalytic system for solar H2 production from ethanol-water mixtures, Journal of Catalysis, 326 (2015) 43-53.
    27. A. Kubacka, M. J. Muñoz-Batista, M. Fernández-García, S. Obregón, G. Colón, Evolution of H2 photoproduction with Cu content on CuOx-TiO2 composite catalysts prepared by a microemulsion method, Applied Catalysis B: Environmental, 163 (2015) 214-222.
    28. L. Díaz, V. D. Rodríguez, M. González-Rodríguez, E. Rodríguez-Castellón, M. Algarra, P. Núñez, E. Moretti, M/TiO2 (M = Fe, Co, Ni, Cu, Zn) catalysts for photocatalytic hydrogen production under UV and visible light irradiation, Inorganic Chemistry Frontiers, 8 (2021) 3491-3500.
    29. J. Yu, X. Zhao, Q. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films, 379 (2000) 7-14.
    30. G. D. Moon, J. B. Joo, I. Lee, Y. Yin, Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production, Nanoscale, 6 (2014) 12002-12008.
    31. J. L. Cao, G. S. Shao, T. Y. Ma, Y. Wang, T. Z. Ren, S. H. Wu, Z. Y. Yuan, Hierarchical meso-macroporous titania-supported CuO nanocatalysts: preparation, characterization and catalytic CO oxidation, Journal of Materials Science, 44 (2009) 6717-6726.
    32. H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, S. Dai, Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells, The Journal of Physical Chemistry C, 114 (2010) 1627-1632.
    33. M. Jung, J. N. Hart, J. Scott, Y. H. Ng, Y. Jiang, R. Amal, Exploring Cu oxidation state on TiO2 and its transformation during photocatalytic hydrogen evolution, Applied Catalysis A: General, 521 (2016) 190-201.
    34. J. Yu, Y. Hai, M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania, Journal of Colloid and Interface Science, 357 (2011) 223-228.
    35. G. Li, J. Huang, J. Chen, Z. Deng, Q. Huang, Z. Liu, W. Guo, R. Cao, Highly active photocatalyst of Cu2O/TiO2 octahedron for hydrogen generation, ACS Omega, 4 (2019) 3392-3397.
    36. S. G. Babu, R. Vinoth, D. P. Kumar, M. V. Shankar, H. L. Chou, K. Vinodgopal, B. Neppolian, Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production, Nanoscale, 7 (2015) 7849-7857.
    37. M. González-Tejero, J. G. Villachica-Llamosas, A. Ruiz-Aguirre, G. Colón, High-performance photocatalytic H2 production using a binary Cu/TiO2/SrTiO3 heterojunction, ACS Applied Energy Materials, 6 (2023) 4007-4015.
    38. F. A. Rabuffetti, H. S. Kim, J. A. Enterkin, Y. Wang, C. H. Lanier, L. D. Marks, K. R. Poeppelmeier, P. C. Stair, Synthesis-dependent first-order raman scattering in SrTiO3 nanocubes at room temperature, Chemistry of Materials, 20 (2008) 5628-5635.
    39. D. J. Lurie, K. Mäder, Monitoring drug delivery processes by EPR and related techniques-principles and applications, Advanced Drug Delivery Reviews, 57 (2005) 1171-1190.
    40. T. Appadurai, C. M. Subramaniyam, R. Kuppusamy, S. Karazhanov, B. Subramanian, Electrochemical performance of nitrogen-doped TiO2 nanotubes as electrode material for supercapacitor and Li-ion battery, Molecules, 24 (2019).
    41. F. Li, Y. Gu, Improvement of performance of dye-sensitized solar cells by doping Er2O3 into TiO2 electrodes, Materials Science in Semiconductor Processing, 15 (2012) 11-14.
    42. G. Colón, M. Maicu, M. C. Hidalgo, J. A. Navío, Cu-doped TiO2 systems with improved photocatalytic activity, Applied Catalysis B: Environmental, 67 (2006) 41-51.
    43. G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, K. A. Gray, Role of Surface/Interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites, The Journal of Physical Chemistry C, 112 (2008) 19040-19044.
    44. P. Baltazar, V. H. Lara, G. Córdoba, R. Arroyo, Kinetics of the amorphous-anatase phase transformation in copper doped titanium oxide, Journal of Sol-Gel Science and Technology, 37 (2006) 129-133.
    45. B. Choudhury, M. Dey, A. Choudhury, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles, International Nano Letters, 3 (2013) 25.
    46. S. Oh, H. Ha, H. Choi, C. Jo, J. Cho, H. Choi, R. Ryoo, H. Y. Kim, J. Y. Park, Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation, The Journal of Chemical Physics, 151 (2019) 234716.
    47. A. Y. Kim, M. Kang, Effect of Al-Cu bimetallic components in a TiO2 framework for high hydrogen production on methanol/water photo-splitting, International Journal of Photoenergy, 2012 (2012) 1-9.
    48. C. A. Gusmão, L. T. Borges, P. H. Palharim, L. Otubo, O. Rodrigues, D. Gouvea, B. Ramos, A. C. S. C. Teixeira, Synthesis, characterization, and application of Pt/PtO2-TiO2/SiO2 materials on a continuous flow packed bed microreactor for enhanced photocatalytic activity under sunlight, Water, 14 (2022) 3864.

    無法下載圖示 全文公開日期 2025/07/20 (校內網路)
    全文公開日期 2025/07/20 (校外網路)
    全文公開日期 2025/07/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE