簡易檢索 / 詳目顯示

研究生: 蘇政一
Cheng-Yi Su
論文名稱: 高效能Fe3C/FeS@C奈米結構之觸媒應用於鹼性陰離子交換膜燃料電池
The Catalyst of Fe3C/FeS@C Nanostructure Apply to Alkaline Anion Exchange Membrane Fuel Cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 郭俞麟
Yu-Lin Kuo
洪逸明
I-Ming Hong
王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧氣還原反應燃料電池非貴重金屬觸媒有機金屬骨架
外文關鍵詞: Oxygen reduction reaction(ORR), fuel cells, non-precious metal catalyst, Metal-Organic Frameworks(MOF)
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫能是目前降低人類對於石油依賴性的方法之一,而鹼性陰離子交換膜燃料電池(AAEMFC)是其中一種有效將化學能轉換成電能與熱能之綠色能源裝置,且由於白金觸媒之價格昂貴而無法被廣泛應用,因此希望發展低廉兼具高效能之非貴金屬觸媒。本研究利用有機金屬骨架-普魯士藍(PB)嵌入導電高分子(PEDOT)形成一特殊形貌,並於特定溫度下進行熱處理以提高觸媒之催化能力,接著將最佳化熱處理溫度之觸媒經過酸洗處理並再次於最佳化溫度二次燒結。實驗結果顯示,本研究最佳化觸媒FeCN-S-800-2nd具有最佳氧氣還原能力,且其電子轉移數可達3.99,已非常接近理想之電子轉移數。由於其表面的孔隙結構,且含有較多總比例之含氮官能基與Fe-Nx基團,大幅提升觸媒整體之氧氣還原能力。此外,觸媒以線性掃描伏安法(LSV)進行30000圈穩定性測試,觸媒之半波電位僅衰退27.3 mV,且於鹼性環境之全電池測試更展現124 mW/cm2之高輸出功率,顯示觸媒於鹼性環境下具有極好的穩定性與效能。
    此研究利用簡易之方法製備特殊形貌且高效能之催化劑,在未來之燃料電池觸媒應用上實為一具有競爭力之選擇。


    Fuel cell is one of a good choice of alternative energy due to its main water as the product. Non-precious metal catalysts of the oxygen reduction reaction (ORR) are extremely attractive in anion exchange membrane fuel cell AEMFC due to long stability and inexpensive cost. Here, a new concept of pyrolyzed poly(3,4-ethylene dioxythiophene) hydrate (PEDOT)-supported by Prussian blue (PB-PEDOT) catalyst for the oxygen reduction reaction in AEMFC cathode shows the high catalytic performance. The PB-PEDOT was pyrolyzed at different temperature to obtain FeCN-S-X (X = 600, 800, 1000 ℃) catalysts among which FeCN-S-800 displays obviously ORR activity. After acid leaching process and second pyrolysis, the optimized electrocatalyst FeCN-S-800-2nd has more positive onset potential and also shows significant ORR performance with a direct four-electron transfer pathway for the AEMFC application. As a result, the catalyst exhibited superior ORR electrocatalytic activity and stability are attributable to the specific structure, high specific surface area, heteroatoms contribution and coordination structure.

    中文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1-1能源的省思與再生 1-2 新興綠色能源-燃料電池 1-2-1燃料電池的種類 1-2-2鹼性陰離子交換膜燃料電池(AAEMFC)介紹 1-2-3燃料電池內部構造 1-2-4燃料電池極化現象 第二章 電化學原理與文獻探討 2-1 電化學原理 2-1-1氧化還原反應 2-1-2氧氣還原途徑 2-1-3氧氣還原反應機制 2-1-4氧氣還原反應之電化學催化 2-2 文獻探討 2-2-1非貴金屬觸媒應用於陰極觸媒 2-2-2硫摻雜之非貴金屬觸媒應用於陰極觸媒 2-2-3有機金屬骨架PB應用於陰極觸媒 2-2-4硫摻雜之有機金屬骨架應用於陰極觸媒 2-3 研究動機 第三章 實驗步驟及研究方法 3-1實驗規劃 3-2實驗材料及藥品 3-3實驗流程 3-4實驗儀器與設備 3-5實驗步驟 3-5-1陰極觸媒製備 3-5-2半電池觸媒工作電極製備 3-6儀器分析原理 3-6-1 X光繞射分析儀 3-6-2熱重量分析儀 3-6-3 場發射掃描式電子顯微鏡 3-6-4 X射線光電子能譜 3-6-5 X光吸收光譜 3-6-6比表面積及孔徑分析儀 3-6-7 穿透式電子顯微鏡 3-6-8電化學分析儀 3-6-9燃料電池分析儀 第四章 結果與討論 4-1 PB-PEDOT觸媒材料 4-1-1 PB-PEDOT之X光繞射分析 4-1-2 PB-PEDOT之形貌與結構分析 4-1-3 PB-PEDOT之熱分析 4-2 FeCN-S-X觸媒材料 4-2-1 FeCN-S-X之氧氣還原反應活性比較 4-2-2 FeCN-S-X之晶體結構分析 4-2-3 FeCN-S-X之形貌分析 4-2-4 FeCN-S-X之X光電子能譜分析 4-2-5 FeCN-S-X之X光吸收光譜分析 4-3 FeCN-S-800-2nd觸媒材料 4-3-1 FeCN-S-800-2nd之X光繞射分析 4-3-2 FeCN-S-800-2nd之形貌分析 4-3-3 FeCN-S-X之X光電子能譜分析 4-3-4 FeCN-S-800-2nd之X光吸收光譜分析 4-3-5 FeCN-S-800-2nd與各觸媒之氧氣還原反應活性比較 4-3-6 FeCN-S-800-2nd觸媒之穩定性測試 4-3-7 FeCN-S-800-2nd觸媒之全電池測試 第五章 結論 第六章 參考文獻

    [1] N. Ramaswamy, S. Mukerjee, Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media, Advances in Physical Chemistry, 2012 (2012) 17.
    [2] Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Progress in Energy and Combustion Science, 66 (2018) 141-175.
    [3] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells - Fundamentals and Applications, Fuel Cells, 1 (2001) 5-39.
    [4] N.A. Anastasijević, V. Vesović, R.R. Adžić, Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part I. Theory, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 229 (1987) 305-316.
    [5] K. Kinoshita, Electrochemical Oxygen Technology, New York: Jhon Wiley & Sons, DOI (1992) 37.
    [6] J. Zhang, Z.J. Wang, Z.P. Zhu, The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: A density functional theory study, J Power Sources, 255 (2014) 65-69.
    [7] L. Geniès, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media, Electrochimica Acta, 44 (1998) 1317-1327.
    [8] J.P. Hoare, The Electrochemistry of Oxygen, New York: John Wiley & Sons, DOI (1968) 26-91.
    [9] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts, Surface Science Reports, 45 (2002) 117-229.
    [10] B.E. Conway, Comprehensive Treatise of Electrochemistry, New York: Kluwer Acadwmic Pub, DOI (1983) 26-91.
    [11] 肖鋼、管衍德、廖福源、陳本源, 燃料電池技術, 全華圖書股份有限公司2010.
    [12] A. Pavlisic, P. Jovanovic, V.S. Selih, M. Sala, N. Hodnik, M. Gaberscek, Platinum Dissolution and Redeposition from Pt/C Fuel Cell Electrocatalyst at Potential Cycling, J Electrochem Soc, 165 (2018) F3161-F3165.
    [13] R. Jasinski, A New Fuel Cell Cathode Catalyst, Nature, 201 (1964) 1212.
    [14] G. Faubert, G. Lalande, R. Cote, D. Guay, J.P. Dodelet, L.T. Weng, P. Bertrand, G. Denes, Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells, Electrochim Acta, 41 (1996) 1689-1701.
    [15] S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J.C.S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M.C. Lin, K.-H. Chen, Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells, Energy Environ. Sci., 5 (2012) 5305-5314.
    [16] M. Xiao, J. Zhu, L. Ma, Z. Jin, J. Ge, X. Deng, Y. Hou, Q. He, J. Li, Q. Jia, S. Mukerjee, R. Yang, Z. Jiang, D. Su, C. Liu, W. Xing, Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N4 Active Site Identification Revealed by X-ray Absorption Spectroscopy, ACS Catalysis, 8 (2018) 2824-2832.
    [17] X. Li, B.N. Popov, T. Kawahara, H. Yanagi, Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells, J Power Sources, 196 (2011) 1717-1722.
    [18] C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B.I. Yakobson, J. Dong, D. Chen, J.M. Tour, Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium, Acs Nano, 11 (2017) 6930-6941.
    [19] Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu, X.L. Wu, E. Terefe, C. Chen, L. Song, M. Rauf, N. Tian, S.G. Sun, Phenylenediamine-Based FeNx/C Catalyst with High Activity for Oxygen Reduction in Acid Medium and Its Active-Site Probing, J Am Chem Soc, 136 (2014) 10882-10885.
    [20] Y.J. Wu, Y.C. Wang, R.X. Wang, P.F. Zhang, X.D. Yang, H.J. Yang, J.T. Li, Y. Zhou, Z.Y. Zhou, S.G. Sun, Three-Dimensional Networks of S-Doped Fe/N/C with Hierarchical Porosity for Efficient Oxygen Reduction in Polymer Electrolyte Membrane Fuel Cells, Acs Appl Mater Inter, 10 (2018) 14602-14613.
    [21] D.W. Wang, D.S. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction, Energ Environ Sci, 7 (2014) 576-591.
    [22] S. Inamdar, H.S. Choi, P. Wang, M.Y. Song, J.S. Yu, Sulfur-containing carbon by flame synthesis as efficient metal-free electrocatalyst for oxygen reduction reaction, Electrochem Commun, 30 (2013) 9-12.
    [23] Z. Liu, H.G. Nie, Z. Yang, J. Zhang, Z.P. Jin, Y.Q. Lu, Z.B. Xiao, S.M. Huang, Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions, Nanoscale, 5 (2013) 3283-3288.
    [24] Z.Y. Guo, C.C. Jiang, C. Teng, G.Y. Ren, Y. Zhu, L. Jiang, Sulfur, Trace Nitrogen and Iron Codoped Hierarchically Porous Carbon Foams as Synergistic Catalysts for Oxygen Reduction Reaction, Acs Appl Mater Inter, 6 (2014) 21454-21460.
    [25] K.G. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution, Nano Energy, 19 (2016) 373-381.
    [26] K.G. Qu, Y. Zheng, Y. Jiao, X.X. Zhang, S. Dai, S.Z. Qiao, Polydopamine-Inspired, Dual Heteroatom-Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting, Adv Energy Mater, 7 (2017).
    [27] H.C. Huang, Y.C. Lin, S.T. Chang, C.C. Liu, K.C. Wang, H.P. Jhong, J.F. Lee, C.H. Wang, Effect of a sulfur and nitrogen dual-doped Fe-N-S electrocatalyst for the oxygen reduction reaction, J Mater Chem A, 5 (2017) 19790-19799.
    [28] S.N. Bhange, S.M. Unni, S. Kurungot, Graphene with Fe and S Coordinated Active Centers: An Active Competitor for the Fe–N–C Active Center for Oxygen Reduction Reaction in Acidic and Basic pH Conditions, ACS Applied Energy Materials, 1 (2018) 368-376.
    [29] X.L. Wu, M.H. Cao, C.W. Hu, X.Y. He, Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor, Cryst Growth Des, 6 (2006) 26-28.
    [30] L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 Microboxes with Hierarchical Shell Structures from Metal-Organic Frameworks and Their Lithium Storage Properties, J Am Chem Soc, 134 (2012) 17388-17391.
    [31] Y. Hou, T.Z. Huang, Z.H. Wen, S. Mao, S.M. Cui, J.H. Chen, Metal-Organic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe3C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions, Adv Energy Mater, 4 (2014).
    [32] X.H. Yan, T.S. Zhao, L. An, G. Zhao, L. Shi, A direct methanol–hydrogen peroxide fuel cell with a Prussian Blue cathode, Int J Hydrogen Energ, 41 (2016) 5135-5140.
    [33] K. Itaya, N. Shoji, I. Uchida, Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes, J Am Chem Soc, 106 (1984) 3423-3429.
    [34] B.K. Barman, K.K. Nanda, Prussian blue as a single precursor for synthesis of Fe/Fe3C encapsulated N-doped graphitic nanostructures as bi-functional catalysts, Green Chem, 18 (2016) 427-432.
    [35] M.B. Zakaria, Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction, Rsc Adv, 6 (2016) 10341-10351.
    [36] Y. Liu, H. Wang, D. Lin, J. Zhao, C. Liu, J. Xie, Y. Cui, A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility, Nano Research, 10 (2017) 1213-1222.
    [37] H. Han, Z. Bai, X. Wang, S. Chao, J. Liu, Q. Kong, X. Yang, L. Yang, Highly dispersed Co nanoparticles inlayed in S, N-doped hierarchical carbon nanoprisms derived from Co-MOFs as efficient electrocatalysts for oxygen reduction reaction, Catal Today, DOI https://doi.org/10.1016/j.cattod.2018.03.032(2018).
    [38] S.K. Singh, X. Crispin, I.V. Zozoulenko, Oxygen Reduction Reaction in Conducting Polymer PEDOT: Density Functional Theory Study, J Phys Chem C, 121 (2017) 12270-12277.
    [39] Z.Y. Guo, H. Liu, C.C. Jiang, Y. Zhu, M.X. Wan, L.M. Dai, L. Jiang, Biomolecule-Doped PEDOT with Three-Dimensional Nanostructures as Efficient Catalyst for Oxygen Reduction Reaction, Small, 10 (2014) 2087-2095.
    [40] 國家同步輻射中心, 國家同步輻射, https://www.nsrrc.org.tw/.
    [41] Q.L. Sheng, D. Zhang, Y. Shen, J.B. Zheng, Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide, Front Mater Sci, 11 (2017) 147-154.
    [42] ChemTube3D, www.chemtube3d.com.
    [43] H. Ming, N.L.K. Torad, Y.D. Chiang, K.C.W. Wu, Y. Yamauchi, Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process, Crystengcomm, 14 (2012) 3387-3396.
    [44] C. Aparicio, L. Machala, Z. Marusak, Thermal decomposition of Prussian blue under inert atmosphere, Journal of Thermal Analysis and Calorimetry, 110 (2012) 661-669.
    [45] M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, M. Kurihara, Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules, Dalton T, 42 (2013) 16049-16055.
    [46] M.C. Wang, R. Jamal, Y.J. Wang, L. Yang, F.F. Liu, T. Abdiryim, Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors, Nanoscale Res Lett, 10 (2015).
    [47] V.A. Setyowati, H.C. Huang, C.C. Liu, C.H. Wang, Effect of Iron Precursors on the Structure and Oxygen Reduction Activity of Iron-Nitrogen-Carbon Catalysts, Electrochim Acta, 211 (2016) 933-940.
    [48] G. Wu, C.M. Johnston, N.H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J.S. Lezama-Pacheco, S.D. Conradson, K.L. More, D.J. Myers, P. Zelenay, Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells, J Mater Chem, 21 (2011) 11392-11405.
    [49] Y. Zang, H. Zhang, X. Zhang, R. Liu, S. Liu, G. Wang, Y. Zhang, H. Zhao, Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries, Nano Research, 9 (2016) 2123-2137.
    [50] X.Y. Xu, C.X. Shi, Q. Li, R. Chen, T.H. Chen, Fe-N-Doped carbon foam nanosheets with embedded Fe2O3 nanoparticles for highly efficient oxygen reduction in both alkaline and acidic media, Rsc Adv, 7 (2017) 14382-14388.
    [51] L.F. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C.H. Tang, H. Gong, Z.X. Shen, L.Y. Jianyi, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energ Environ Sci, 5 (2012) 7936-7942.
    [52] S.H. Liu, J.R. Wu, F.S. Zheng, J.M. Guo, Impact of iron precursors on the properties and activities of carbon-supported Fe-N oxygen reduction catalysts, J Solid State Electr, 19 (2015) 1381-1391.
    [53] C. Li, C. He, F. Sun, M. Wang, J. Wang, Y. Lin, Incorporation of Fe3C and Pyridinic N Active Sites with a Moderate N/C Ratio in Fe–N Mesoporous Carbon Materials for Enhanced Oxygen Reduction Reaction Activity, ACS Applied Nano Materials, 1 (2018) 1801-1810.
    [54] Y.G. Li, W. Zhou, H.L. Wang, L.M. Xie, Y.Y. Liang, F. Wei, J.C. Idrobo, S.J. Pennycook, H.J. Dai, An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes, Nat Nanotechnol, 7 (2012) 394-400.
    [55] C.W. Tsai, H.M. Chen, R.S. Liu, K. Asakura, L. Zhang, J.J. Zhang, M.Y. Lo, Y.M. Peng, Carbon incorporated FeN/C electrocatalyst for oxygen reduction enhancement in direct methanol fuel cells: X-ray absorption approach to local structures, Electrochim Acta, 56 (2011) 8734-8738.
    [56] Y.S. Zhu, B.S. Zhang, X. Liu, D.W. Wang, D.S. Su, Unravelling the Structure of Electrocatalytically Active Fe-N Complexes in Carbon for the Oxygen Reduction Reaction, Angew Chem Int Edit, 53 (2014) 10673-10677.
    [57] J.R. Hayes, Investigations of the Effect of Transition Metal Substitution on the Pre-edge of X-ray Absorption Near-Edge Spectra, Department of Chemistry, University of Saskatchewan, 2012.
    [58] A.P. Grosvenor, J.E. Greedan, Analysis of Metal Site Preference and Electronic Structure of Brownmillerite-Phase Oxides (A(2)B'xB2-xO5; A = Ca, Sr; B'/B = Al, Mn, Fe, Co) by X-ray Absorption Near-Edge Spectroscopy, J Phys Chem C, 113 (2009) 11366-11372.
    [59] M. Li, J.J. Deng, A.W. Pu, P.P. Zhang, H. Zhang, J. Gao, Y.Y. Hao, J. Zhong, X.H. Sun, Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation, J Mater Chem A, 2 (2014) 6727-6733.
    [60] H.L. Peng, Z.Y. Mo, S.J. Liao, H.G. Liang, L.J. Yang, F. Luo, H.Y. Song, Y.L. Zhong, B.Q. Zhang, High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction, Sci Rep-Uk, 3 (2013).
    [61] D. Zhou, L.P. Yang, L.H. Yu, J.H. Kong, X.Y. Yao, W.S. Liu, Z.C. Xu, X.H. Lu, Fe/N/C hollow nanospheres by Fe(III)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction, Nanoscale, 7 (2015) 1501-1509.
    [62] H.B. Tan, Y.Q. Li, X.F. Jiang, J. Tang, Z.L. Wang, H.Y. Qian, P. Mei, V. Malgras, Y. Bando, Y. Yamauchi, Perfectly ordered mesoporous iron-nitrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes, Nano Energy, 36 (2017) 286-294.
    [63] S.K. Shaw, S.K. Alla, S.S. Meena, R.K. Mandal, N.K. Prasad, Stabilization of temperature during magnetic hyperthermia by Ce substituted magnetite nanoparticles, J Magn Magn Mater, 434 (2017) 181-186.
    [64] M. Mamlouk, K. Scott, J.A. Horsfall, C. Williams, The effect of electrode parameters on the performance of anion exchange polymer membrane fuel cells, Int J Hydrogen Energ, 36 (2011) 7191-7198.

    QR CODE