簡易檢索 / 詳目顯示

研究生: 邱奕勳
Yi-Hsun Chiu
論文名稱: 應用於熱電系統之新型最大功率追蹤方法
A novel maximum power point tracker for thermoelectric generation system
指導教授: 劉益華
Yi-Hua Liu
口試委員: 劉添華
Tian-Hua Liu
楊宗銘
Chung-Ming Young
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
陳良瑞
Liang-Rui Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 工業廢熱回收熱電發電系統最大功率追蹤
外文關鍵詞: industrial waste heat recovery, thermoelectric generation system, maximum power point tracking
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於化石燃料的枯竭造成能源成本日益攀升,因此發展乾淨且對環境友善的發電系統已變得日益迫切。隨著全球對能源的需求越來越高,各國開始尋找替代能源,在眾多新的替代能源中,熱電(Thermoelectric, TE)模組可以將熱能轉換成電能,因此在運輸或工業部門上之應用令人期待。熱電發電(Thermoelectric Generator, TEG)是一種能量轉換技術,可以將熱能直接轉換成為電能,反之亦然。熱電發電系統相當有彈性,其應用包含小至mW的系統大至數kW 的系統。熱電發電系統的優點包括不需維修、無噪音運轉、對環境友善以及可靠度較高等。此外,只要穩定且持續的提供溫差,熱電發電系統即能不停歇的產出電力。
本研究提出一新型混合式最大功率追蹤 (Maximum Power Point Tracking, MPPT),結合簡單容易實現的擾動觀察法(Perturb and Observe, P&O)技術與具快速追蹤之開路電壓法(Open Circuit Voltage, OCV),所提的方法具有追蹤速度快、不需額外電路及沒有額外的功率損失等特性。為了驗證所提出之最大功率追蹤技術的可行性,本文將其實際應用於工廠的廢熱回收系統上,總回收能量達1.2kW。與傳統的擾動觀察法相比,此方法在溫差分別為ΔT=60°C與ΔT=180°C時可以提高追蹤速度達42.9%與86.2%。且溫差分別為ΔT=60°C與ΔT=180°C時功率損失可以進一步減少24.0%與87.0%。


Due to the escalating energy costs and the depletion of fossil fuel sources, the search for cleaner and environmental friendly energy becomes increasingly urgent. These growing global issues force public to seek for alternative methods of generating electrical power. Among the feasible technologies for this purpose, thermoelectric (TE) energy converter is gradually earning interest because of its ability to transform heat given out from the transportation or industrial sectors into electricity. Thermoelectric generator (TEG) is an energy conversion technology which allows thermal energy directly converting into electrical energy and vice versa. TEG modules are flexible and thus can be utilized in systems from the miniature Milliwatt level to large-scale Kilowatt applications. Advantages of TEG include free maintenance, silent operation, eco-friendliness and high reliability. Furthermore, TEG is capable of generating electricity continuously as long as there are a heat source and a cold source.
In this dissertation, a novel hybrid maximum power point tracking (MPPT) method suitable for TEG system is proposed and investigated. The proposed MPPT technique combines the simplicity of perturb and observe (P&O) method and the fast tracking ability of open circuit voltage (OCV) method. The advantages of the proposed MPPT approach include fast tracking speed, no additional circuit required and no temporary power loss. To validate the feasibility of the proposed MPPT technique, an 1.2 kW thermoelectric generation system for industrial waste heat recovery is also constructed, experimental results show that comparing with conventional P&O technique, the proposed method can improve the tracking speed for 42.9% and 86.2% when temperature differences are ΔT=60°C and ΔT=180°C, respectively. Moreover, the energy loss can be improved by 24.0% and 87.0% when temperature differences are ΔT=60°C and ΔT=180°C, respectively.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究目的 7 1.4 論文大綱 8 第二章 熱電發電系統簡介 10 2.1 熱電原理 10 2.2 熱電材料之物理特性 13 2.3 熱電發電之電氣特性 14 2.4 熱電模組串並聯特性 19 2.4.1 無旁路二極體與防逆流二極體架構 20 2.4.2 僅並接旁路二極體架構 20 2.4.3 並接旁路二極體且串接防逆流二極體架構 21 2.5 熱電發電系統架構配置 22 第三章 熱電發電系統之最大功率追蹤技術簡介 24 3.1 傳統最大功率追蹤技術 24 3.1.1 開路電壓法 24 3.1.2 擾動觀察法 25 3.1.3 增量電導法 27 3.1.4 變動步階式擾動觀察法 29 3.1.5 新型開路電壓法 31 3.2 最大功率追蹤法比較 33 第四章 熱電發電之最大功率追蹤系統 35 4.1 最大功率追蹤系統之建模與分析 35 4.1.1 同步整流降壓式轉換器簡介 35 4.1.2 同步整流降壓式轉換器小信號模型分析 37 4.1.3 同步整流降壓式轉換器元件值設計 43 4.1.4 同步整流降壓式轉換器之閉迴路補償器設計與分析 45 4.2 最大功率追蹤系統之韌體架構設計 49 4.2.1 Microchip 16位元dsPIC33FJ16GS502 簡介 49 4.2.2 數位 PID 補償器 51 4.2.3 數位濾波器之韌體架構 54 4.3 新型最大功率追蹤技術 60 第五章 熱電發電系統最大功率追蹤模擬與實驗結果 68 5.1 熱電發電系統模擬 70 5.2 熱電發電系統實驗結果 74 第六章 結論與未來研究方向 83 6.1 結論 83 6.2 未來研究方向 83 參考文獻 85

[1] M. Eckhart, M. El-Ashry, D. Hales, K. Hamilton, P. Rae, and A. Zervos, "Renewables 2016 Global Status Report," in Proceedings of the Renewable Energy Policy Network for the 21st Century, Paris, France, 2016, pp. 1-216.
[2] 「103年能源統計手冊」,經濟部能源局,2015年5月。
[3] 黃釋緯、蔡佩君、馬公勉,「區域能源整合調查與策略建議」,台灣經濟研究院,2011年11月。
[4] D.M.Rowe, CRC Handbook of Thermoelectrics, CRC Press LLC., USA, 1995.
[5] 朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,22期, pp.78-89。
[6] S. LeBlanc, “Thermoelectric generators Linking material properties and systems engineering for waste heat recovery applications”, Sustainable Materials and Technologies, Vol.1-2, pp.26-35, Dec.2014.
[7] M. H. Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir, M. Mohamad, “A review on thermoelectric renewable energy Principle parameters that affect their performance,” Renew. Sustain Energy Rev., Vol. 30, pp.337-355, Feb. 2014.
[8] X. F. Zheng, C. X. Liu, Y. Y. Yann, Q. Wang, “A review of thermoelectric research – Recent developments and potentials for sustainable and renewable energy applications,” Renew. Sustain Energy Rev., Vol. 32, pp.486-503, Apr. 2014.
[9] A. Date, A. Date, C. Dixon, A. Akbarzadeh, ”Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation,” Renew. Sustain Energy Rev., Vol. 33 ,pp.371-381, May 2014.
[10] M. Bashir, S. M. Said, M. F. M. Sabri, M. H. Elsheikh, ”Recent advances on Mg2Si1 xSnx materials for thermoelectric generation, ”Renew. Sustain Energy Rev., Vol. 37, pp.569-584, Sep. 2014.
[11] W. He, G. Zhang, X. Zhang, J. Ji, G. Li, X. Zhao ”Recent development and application of thermoelectric generator and cooler,” Appl. Energy, Vol. 143, pp.1-25, Dec. 2014.
[12] W. Liu, Q. Jie, H. Seok Kim, Z. Ren, “Current progress and future challenges in thermoelectric power generation from materials to devices,” Acta Mater., Vol. 87, Apr.2015.
[13] A. Rezaniaa, L.A. Rosendahla, H. Yinb, “Parametric optimization of thermoelectric elements footprint for maximum power generation,” J. Power Sources, Vol. 255, pp.151-156, Jun. 2014.
[14] S. Linekin, S. Ben-Yaakov, “Modeling and Analysis of Thermoelectric Modules,” IEEE Trans. Ind. Appl., Vol.43, issue 2, pp.505-512, Mar. 2007.
[15] Y. Wanga, C. Daia, S. Wang, ”Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source,” Appl. Energy, Vol. 112, pp.1171-1180, Dec.2013.
[16] T. Liao, B. Lin, Z. Yang, “Performance characteristics of a low concentrated photovoltaic-thermoelectric hybrid power generation device,” Int. J. Therm. Sci., Vol. 77, pp.158-164, Mar. 2014.
[17] A. Montecucco, A. R. Knox, “Accurate simulation of thermoelectric power generating systems,” Appl. Energy, Vol. 118, pp.166-172, Apr. 2014.
[18] E. Cantatore, M. Ouwerkerk, ”Energy scavenging and power management in networks of autonomous microsensors,” Microelectron. J., Vol. 37, issue 12, pp-1584-1590, Dec. 2006.
[19] M. Dini, A. Romani, M. Filippi, V. Bottarel, G. Ricotti, M. Tartagni, ”A Nanocurrent Power Management IC for Multiple Heterogeneous Energy Harvesting Sources,” IEEE T Power Electr.., Vol.30, no.10 , pp.5665-5680, Oct. 2015.
[20] A. Montecucco, J. Siviter, A. R. Knox, ”The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel,” Appl. Energy, Vol. 123, pp.47-54, Jun. 2014.
[21] R. Ahiska, H. Mamur, ”A test system and supervisory control and data acquisition application with programmable logic controller for thermoelectric generators,” Energy Convers. Manage., Vol. 64, pp.15-22, Dec. 2012.
[22] F. J. Lesage, N. P. Potvin, ”Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance,” Energy Convers. Manage., Vol. 66, pp.98-105, Feb. 2013.
[23] R. Y. Kim, J. S. Lai, “A Seamless Mode Transfer Maximum Power Point Tracking Controller For Thermoelectric Generator Applications,” IEEE T Power Electr., Vol. 23, issue 5, pp.2310-2318, Sep.2008.
[24] M. G. Molina, L. E. Juanicó, G. F. Rinalde, E. Taglialavore, S. Gortari, ”Design of improved controller for thermoelectric generator used in distributed generation,” Int. J. Hydrogen Energy, Vol. 35, issue 11, pp.5968-5973, Jun. 2010.
[25] M. G. Molinaa, L. E. Juanicób, G. F. Rinaldec, “Design of innovative power conditioning system for the grid integration of thermoelectric generators,” Int. J. Hydrogen Energy, Vol. 37, issue 13, pp.10057-10063, Jul. 2012.
[26] J. Kim, C. Kim, “A DC–DC boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications,” IEEE T Power Electr., Vol. 28, no. 8, pp.3827-3833, Aug. 2013.
[27] I. Laird, D. D. C. Lu, ”High step-up DC to DC topology and MPPT algorithm for use with a thermoelectric generator,” IEEE T Power Electr., Vol. 28, no. 7, pp.3147-3157, Jul. 2013.
[28] S. C. Bautista, A. Eladawy, A. N. Mohieldin, E. S. Sinencio, “boost converter with dynamic input impedance matching for energy harvesting with multi-array thermoelectric generators,” IEEE Trans. Ind. Electron, Vol.61, issue 10, pp.5345-5353, Oct. 2014,
[29] M. Ashraf, N. Masoumi, ”High efficiency boost converter with variable output voltage using a self-reference comparator,” AEU – Int. J. Electron. Commun., Vol. 68, issue 11, pp.1058-1064, Nov. 2014.
[30] J. D. Parka, H. Leeb, M. Bonda, ”Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system,” Energy Convers. Manage., Vol. 86, pp.233-240, Oct.2014.
[31] A. Montecucco, A. R. Knox, ”maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators,” IEEE T Power Electr., Vol. 30, no. 2, pp.828-838, Feb. 2015.
[32] S. Manikandan, S. C. Kaushik, “Thermodynamic studies and maximum power point tracking in thermoelectric generator–thermoelectric cooler combined system,” Cryogenics, Vol.67, pp.52-62, Apr.2015.
[33] M. Bond, J. D. Park, “Current-Sensorless Power Estimation and MPPT Implementation for Thermoelectric Generators,” IEEE Trans. Ind. Electron, Vol. 62, no. 9, pp.5539-5548, Sep. 2015.
[34] A. Paraskevas, E. Koutroulis, ”A simple maximum power point tracker for thermoelectric generators,” Energy Convers. Manage., Vol.108, pp.355-365, Jan.2016.
[35] X. Liu, L. Huang, K. Ravichandran, E. S. Sinencio, ”A highly efficient reconfigurable charge pump energy harvester with wide harvesting range and two-dimensional MPPT for internet of things,” IEEE J. Solid-State Cir., Vol. 51, no. 5, pp.1302- 1312, MAY 2016
[36] D. Champier, J. P. B´ed´ecarrats, T. Kousksou, M. Rivaletto, F. Strub, P. Pignolet, ”Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove,” Energy, Vol.36, Issue 3, pp.1518-1526, Mar.2011.
[37] S. M. O'Shaughnessy, M. J. Deasy, J. V. Doyle, A. J. Robinson, ”Field trial testing of an electricity-producing portable biomass cooking,” Energy for Sustainable Dev., Vol.20, pp.1-10, Jun. 2014.
[38] R. Y. Kim, J. S. Lai, B. York, A. Koran, ”Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system,” IEEE Trans. Ind. Electron, Vol. 56, no. 9,pp.03709-3716, Sep. 2009.
[39] J. Eakburanawat, I. Boonyaroonate, “Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique,” Appl. Energy, Vol. 83, issue 7, pp. 687-704, Jul. 2006.
[40] C. E. Kinsella, S. M. O’Shaughnessy, M. J. Deasy, M. Duffy, A. J. Robinson Battery, “charging considerations in small scale electricity generation from a thermoelectric module,” Appl. Energy, Vol. 114, pp. 80-90, Feb. 2014.
[41] X. Gao, S. J. Andreasen, S. K. Kær, L. A. Rosendahl, “Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery,” Int. J. Hydrogen Energy, Vol. 39, issue 12, pp. 6637-6645, Apr. 2014.
[42] H. Xiaoa, K. Qiub, X. Goua, Q. Oua, “A flameless catalytic combustion-based thermoelectric generator for powering electronic instruments on gas pipelines,” Appl. Energy, Vol. 112, pp. 1161-1165, Dec. 2013.
[43] J. Z. Roldan, S. C. Bautista, A. C. Reyes, E. S. Sinencio, “A Power Management Unit With 40 dB Switching-Noise-Suppression for a Thermal Harvesting Array,” IEEE Trans. on Circuits and system, Vol. 62, no. 8, pp.1918-1928, Aug. 2015.
[44] C. Yu, K. T. Chau, “Thermoelectric automotive waste heat energy recovery using maximum power point tracking,” Energy Convers. Manage., Vol. 50, issue 6, pp. 1506–1512 , Jun.2009.
[45] C. T. Hsu, G. Y. Huang, H. S. Chu, B. Yu, D. J. Yao, ”Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators,” Appl. Energy, Vol. 88, issue 4, pp. 1291–1297 , Apr. 2011.
[46] R. Saidur, M. Rezaei, W. K. Muzammil, M. H. Hassan, S. Paria, M. Hasanuzzaman, “Technologies to recover exhaust heat from internal combustion engines,” Renew. Sustain Energy Rev., Vol. 16, issue 8, pp. 5649–5659 , Oct. 2012.
[47] X. Liu, Y. D. Deng, Z. Li, C.Q. Su, ”Performance analysis of a waste heat recovery thermoelectric generation system for automotive application,” Energy Convers. Manage., Vol. 90, pp. 121–127 , Jan. 2015.
[48] X. Zhang, K. T. Chau, ”An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking,” Energy Convers. Manage., Vol. 52, issue1, pp. 641–647 , Jan. 2011.
[49] K. Qiu, , A. C. S. Hayden, “Development of a novel cascading TPV and TE power generation system,” Appl. Energy, Vol. 91, issue1, pp.304–308 , Mar. 2012.
[50] F. J. Lesagea, R. Pelletiera, L. Fourniera, É. V. Sempelsc, “Optimal electrical load for peak power of a thermoelectric module with a solar electric application,” Energy Convers. Manage., Vol. 74, pp.51–59 , Oct. 2013.
[51] W. He, J. Z. Zhou, C. Chen, J. Ji, “Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic thermal system in summer and winter operation modes,” Energy Convers. Manage., Vol. 84, pp.41–49 , Aug. 2014.
[52] H. Nagayoshi, K. Tokumisu, T. Kajikawa, “Novel maximum power point tracking control system for thermoelectric generator and evaluation of mismatch power loss reduction,” 5th European Conference on Thermoelectrics 2007, Sep.2007
[53] M. Chen, X. Gao, ”Theoretical, experimental and numerical diagnose of critical power point of thermoelectric generators,” Energy, Vol.78, pp.364-372, Dec. 2014.
[54] M. Sokolov, D. Shmilovitz, “A Modified MPPT Scheme for Accelerated Convergence,” IEEE Trans. Energy Convers., Vol.23, Issue 4, pp.1105-1107, Dec. 2008.
[55] Microchip Datasheet of dsPIC30F1010/2020, Microchip, Available at: http://www.microchip.com/.
[56] 賴文能、林國祥、高志暐,「數位信號處理」第三版,高立圖書有限公司,2007 年。
[57] 趙清風,「控制工程初階-使用MATLAB Simulink」,全華科技圖書,民國90 年12 月。
[58] 劉金琨,「先進PID 控制-MATLAB 仿真」,電子工業出版社,2007年5 月。
[59] S. Buso and P. Mattavelli, Digital control in power electronics. Italy: Morgan & Claypool, 2006.
[60] S. T. Karris, Signals and systems with MATLAB® applications. Fremont, California: Orchard, 2003.

無法下載圖示 全文公開日期 2021/08/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2031/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE