簡易檢索 / 詳目顯示

研究生: 陳潤安
Run-An Chen
論文名稱: 應用脈衝寬度調變和正交解碼改善超音波諧波格雷編碼誤差
Error reduction of ultrasound harmonic Golay encoding with pulse-width-modulation (PWM) and orthogonal decoding
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
鄭耿璽
Geng-Shi Jeng
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 格雷編碼諧波影像脈衝寬度調變正交解碼
外文關鍵詞: Golay encoding, harmonic imaging, pulse-width-modulation, orthogonal decoding
相關次數: 點閱:257下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波發射端對於諧波格雷編碼需要四分之一相位偏移,然而低階脈衝產生器因為只能發射三階振幅的方波,導致無法完全的產生位移90°的方波,因此所產生的諧波格雷編碼不能完整轉換出正確的反相編碼”1”與”-1”,此編碼錯誤的問題造成了明顯的軸向旁瓣在匹配解碼後。本論文利用相位任意波形發射的脈衝寬度調變(pulse-width-modulation, PWM)在匹配格雷編碼上去抑制旁瓣峰值程度(peak range side lobe, PRSL),其結果顯示在三階振幅的波形中,擁有高取樣率如100倍中心頻率的PWM發射波形提供的PRSL最低,然而當取樣率下降PRSL則會快速的上升。對比一般方波發射,PWM發射波形的PRSL可能會更高假如其取樣率低於20倍中心頻率。本論文提出一個新穎的正交格雷解碼技術,使用兩組互相正交的格雷發射波形去消除在格雷編碼中因為其相位未完全反相的編碼錯誤,此結果指出正交格雷解碼可以改善B-mode影像9.5dB的對比度藉由移除在無回聲cyst區域中的旁瓣假影,對比一般傳統的匹配濾波解碼。


    Quadrature phase shift is required in the ultrasound transmit end for harmonic Golay encoding. Nonetheless, typical 3-level square transmit waveform fails to reproduce the 90° phase shift and thus the resultant harmonic code is not exactly encoded as the phased-inverted symbols of +1 and -1. This introduces coding error and subsequent range side lobe artifacts after complementary decoding. In this work, pulse-width-modulation (PWM) of phased arbitrary transmit waveforms is applied for complementary Golay encoding to suppress peak range side lobe level (PRSL). Results show that, among 3-level waveforms, PWM transmit with high sampling rate (fs = 100f0) provides the lowest PRSL but the PRSL increases rapidly when the sampling rate decreases. Compared to the typical square wave, the PRSL of PWM transmit could be even higher if the sampling rate is lower than 20 times f0. A novel orthogonal Golay decoding technique is also developed by using two mutually orthogonal Golay transmit pairs to eliminate the coding error from incomplete phase inversion in Golay encoding. Results indicate that the orthogonal decoding can improve the B-mode image contrast by 9.5 dB by removing side lobe artifacts in the anechoic cyst region, compared to the conventional matched decoding.

    摘要 I Abstract II 誌謝 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 超音波影像基本原理 1 1-2 超音波諧波影像 4 1-2-1 組織諧波影像 4 1-2-2 脈衝反相技術 8 1-3 編碼波形原理 10 1-4 超音波發射系統 12 1-5 方波相位編碼錯誤 16 1-6 研究動機與目的 18 第二章 諧波影像之編碼波形改良 19 2-1 格雷編碼原理與特性 19 2-1-1 格雷編碼原理與特性 19 2-1-2 格雷編碼建構方式-Hadamard矩陣 22 2-2 Pulse-Width Modulation (PWM) 26 2-2-1 PWM基本介紹 26 2-2-2 PWM取樣頻率(fs) 28 2-3 正交格雷解碼 31 第三章 組織諧波信號模擬 34 3-1 KZK諧波模擬方法(KZK Simulation Of Harmonic) 34 3-2 模擬結果 36 3-2-1 信號頻寬為20%之PWM、任意波形以及方波發射波形比較 36 3-2-2 信號頻寬為50%之PWM、任意波形以及方波發射波形比較 41 3-2-3 二位元與四位元解碼封包比較 47 3-2-4 正交格雷解碼諧波封包圖 49 第四章 組織諧波影像實驗:正交解碼驗證 52 4-1實驗系統架構 52 4-2格雷諧波影像合成方式介紹 55 4-3 Prodigy實驗影像合成結果 56 第五章 討論、結論與未來工作 61 參考文獻 70

    [1] 沈哲州,醫用超音波影像課程講義,國立台灣科技大學,台北(2013)
    [2] 彭俊凱,「雙頻諧波影像之軸向旁瓣消除與正交編碼波形」,碩士論文,國立台灣科技大學,台北(2013)
    [3] 邱奕元,「使用啾聲信號之三被頻發射相位法於諧波影像偵測」,碩士論文,國立台灣科技大學,台北(2008)
    [4] 巫祈,「用於雙頻組織諧波影像之格雷編碼波形」,碩士論文,國立台灣科技大學,台北(2012)
    [5] ANALOG DEVICES AD9106 Data Sheet
    [6] http://www.analog.com/en/products/rf-microwave/direct-digital-synthesis-modulators/ad9106.html#product-samplebuy
    [7] Supertex inc. HV7360 Data Sheet
    [8] http://www.findchips.com/search/hv7360
    [9] TEXAS INSTRUMENTS TX517 Data Sheet
    [10] http://www.ti.com/product/TX517
    [11] C.C Shen, J.K Peng, C. Wu and C.Y Liu, “Orthogonal Golay excitation for rang side lobe elimination in dual-frequency harmonic imaging,” Biomedical Signal Processing and Control 18(2015) 386-393
    [12] I.Trots, “Mutually orthogonal Golay complementary sequences in synthetic aperture imaging systems,” Archives of Acoustics 40, 2 (2015) 283-289.
    [13] R.Y. Chiao and L.J. Thomas, “Synthetic transmit aperture imaging using orthogonal Golay coded excitation,” IEEE Ultrasonics Symposium (2000) 1677-1680.
    [14] D.M.J. Cowell and S. Freear, “Quinary excitation method for pulse compression ultrasound measurements,” Ultrasonics 48 (2008) 98-108.
    [15] R.Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer's perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 (2005) 160-170.
    [16] T. Misaridis and J.A. Jensen, “Use of modulated excitation signals in medical ultra-sound. Part II: design and performance for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 (2005) 192-207.
    [17] A. Nowicki, W. Secomski, J. Litniewski, I. Trots and P.A. Lewin, “On the application of signal compression using Golay's codes sequences in ultrasound diagnostic,” Archives of Acoustics 28, 4 (2003) 313-324.
    [18] C.C Shen and H.T Wang, “Dual-frequency tissue harmonic suppression using phase coded pulse sequence: Proof of concept using a phantom,” Ultrasonics 53 (2013) 717-726.
    [19] P.R Smith, D.M.J Cowell and S. Freear, “Width-modulated square-wave pulses for ultrasound applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (2013) 2244-2256.
    [20] 黃郁軒,「超音波影像角度複合技術於合成孔徑與傳統成像之比較」,碩士論文,國立台灣科技大學,台北(2014)
    [21] L. Demi, M.D. Verweij and K.W. Van Dongen, “Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic imaging--a feasibility study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (2012) 2439-2447.
    [22] C.C Shen and C.K Peng, “Orthogonal encoding for high-bit Golay excitation in dual-frequency harmonic imaging,” Physics Procedia 70 (2015) 1109-1113.
    [23] S-Sharp Corporation Ultrasound Pulse Sequencing User Manual

    QR CODE