簡易檢索 / 詳目顯示

研究生: 林榮佑
Jung-yu Lin
論文名稱: 使用環型陣列式探頭之三倍頻發射相位法於組織諧波信號分
ANALYSIS OF TISSUE HARMONIC SIGNAL BASED ON THIRD HARMONIC TRANSMIT PHASING USING ANNULAR ARRAY PROBE
指導教授: 沈哲州
Che-Chou Shen
口試委員: 廖愛禾
Liao, Ai-Ho
鄭耿璽
Jeng, Geng-Shi
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 諧波影像三倍頻發射相位法多通道環型陣列式探頭
外文關鍵詞: Harmonic imaging, Third harmonic transmit phasing, Multitude elements array of annular probe
相關次數: 點閱:157下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有限振幅失真現象導致波型失真會產生許多原本沒有的頻率成份,組織諧波影像的諧波信號便是這樣產生的。三倍頻發射相位法可藉由外加一個可改變相位的三倍頻信號而產生頻率和及頻率差的諧波成分來抑制與增強組織諧波信號以改善諧波影像品質。如何用適合的探頭作出所要的功能,在組織諧波中由於諧波訊號是由非線性現象所產生,所以其訊號強度是較基頻訊號微弱,所以要增強諧波影像的強度,但是由於探頭的頻寬限制,要在單一探頭產生不同的頻率,或接收2倍頻的頻率都會受到探頭的頻寬的影響,所以要如何作出適當的探頭就很重要。
    在本研究中,經由模擬確認三倍頻相位法於單一陣列式探頭實現的可能性,但是在研究中發現單一陣列式探頭中由於基頻與三倍頻設計於探頭中不同通道時,由於空間上的差異,並無法得到很好的空間解析,能解決此一問題的方法為使用多通道陣列式探頭,於相同半徑環型陣列式探頭中通道越多則空間解析越佳。


    The Finite amplitude distortion will be let waveform distortion caused many not originally produce the frequency components. Tissue harmonic imaging is the product of such harmonic signals. The method of third harmonic (3f0) transmit phasing utilizes an additional 3f0 transmit signal to provide mutual cancellation and addition between the frequency-sum component and the frequency-difference component of tissue harmonic signal. Appropriate to the desired function of probe. In tissue harmonic signals, because non-linear phenomenon of harmonics. So the signal strength is weak compared with the baseband signal, so images to enhance the harmonic intensity However, due to bandwidth limit the probe to produce different probes in a single frequency, or receive Second harmonic frequency bandwidth will be the impact of the probe, so how appropriate it is important to the probe.
    In this study, the simulation confirmed that the third harmonic phase method on a single array probe the possibility of achieving. However, the study found that a single array probe in the fundamental frequency and third harmonic design of the different channels in the probe, due to differences in space, and can not be very good spatial resolution. To solve this problem for the use of multi-channel array probes and the same radius of the annular array probe in the channel the more the better in the spatial resolution.

    中文摘要 II Abstract ………………………………………………………………….…III 致謝……………… IV 圖目錄……………………………………………………………………….3 第一章、 緒論 6 1-1醫用超音波的特性簡介與基本原理 6 1-2非線性失真 10 1-3組織諧波影像與諧波強度調變 13 1-4探頭的基礎知識 16 1-5研究動機與目標 20 1-6論文架構 20 第二章、 三倍頻發射相位法 21 2-1組織諧波信號 21 2-2第二諧波增強與抑制的相位關係 22 第三章、 模擬研究 23 3-1模擬方法 23 3-1-1非線性聲場傳遞於陣列式探頭 26 3-1-2線性聲場傳遞於環形探頭 27 3-2模擬結果 29 3-2-1非線性聲場傳遞於陣列式探頭 29 3-2-2非線性聲場傳遞於環形探頭 35 第四章、 實驗架構與實驗結果 44 4-1實驗架構 44 4-1-1環形探頭諧波信號的量測與架設方法 44 4-1-2環形探頭諧波影像的量測與架設方法 46 4-2實驗結果 48 4-2-1環形探頭諧波影像 48 4-2-2環形探頭諧波信號 49 第五章、 結論與未來工作 54 5-1討論 54 5-2結論 55 5-3未來工作 56 參考文獻 58

    [1] 沈哲州,「超音波組織非線性影像分析」,國立台灣大學碩士論文,民國八十九年。
    [2]王裕鈞,「使用三倍頻發射相位法於組織諧波信號分析」,國立台灣科技大學碩士論文,民國九十六年。
    [3]李嘉明、李玉華,「新超音波醫學-(1)醫用超音波的基礎」,合記圖書出版社,民國95年。
    [4]Thomas L. Szabo,”Diagnostic Ultrasound Image”, Academic Press Series in Biomedical Engineering, 2004.
    [5] John Wiley & Sons, “Physic and Instrumentation of Diagnostic Medical Ultrasound”, Peter Fish, 1990.
    [6]Jian-Hung Liu, Sheng-Yung Chen, “A single Element Transducer with Nonuniform Thickness for High-Frequency Broadband Applications”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 56, NO. 2, February 2009.
    [7]P. Ted Christopher and Kevin J. Parker, “New approaches to the linear propagation of acoustic fields”, J. Acoust. Soc. Am. 90(1),July 1991.
    [8]Wanyne R. Hedrick, David L. Hykes, Dale E. Starchman,”Ultrasound Physics and Instrumentation”, Elsevier Mosby,2005, ISBN 0-323-03212-5.
    [9]Ted Christopher, “Finite Amplitude Distortion-Based Inhomogeneous Pulse Echo Ultrasonic Imaging”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 44, NO. 1, January 1997.
    [10]C.C. Shen, Yu-Chun Wang, and Yi-Chun Hsieh,”Third Harmonic Transmit Phasing for Tissue Harmonic Generation”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 54, NO. 7, JULY 2007.
    [11] C. A. Cain, ”Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis”, J. Acoust. Soc. Amer., vol. 80,pp. 28-32, July 1986.
    [12] M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media”, J. Acoust. Soc. Amer., vol. 73,pp. 774-779, Mar. 1983.
    [13] C. C. Shen and P. C. Li, “Harmonic leakage and image quality degradation in tissue harmonic imaging”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 48, pp.728-736, May. 2001.
    [14] P.C.Li and C.C.Shen, ”Effects of transmit focusing on finite amplitude distortion based second harmonic generation”, Ultrasonic Imaging,Vol.21,pp.243-258,1999.
    [15] T. Christopher, ”Source prebiasing for improved second harmonic bubble-response imaging”, IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 46, pp. 556–563,May. 1999.
    [16] C.C.Shen and Tai-Yu Shi, “Third harmonic transmit phasing for SNR improvement in tissue harmonic imaging with Golay-encoded excitation”, Ultrasonics. 2011 Jul ; 51(5):554-60.
    [17] Thomas JD, Rubin DN, ” Tissue harmonic imaging: why does it work?” J Am Soc Echocardiogr. 1998 Aug;11(8):803-8.
    [18] Ayache Bouakaz and Nico de Jong, “Native Tissue Imaging at Superharmonic Frequencies”, IEEE Trans Ultrason Ferroelectr Freq Control., VOL. 50, NO. 5, May. 2003
    [19] P. T. Christopher, K. J. Parker, ”New approaches to nonlinear diffractive”, J. Acoust. Soc. Amer., vol. 90,no. 1, pp. 488-499, Nov. 1991.
    [20] Hoffelner J, Landes H, Kaltenbacher M, Lerch R, “Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation”, IEEE Trans Ultrason Ferroelectr Freq Control. 2001 May;48(3):779-86.

    QR CODE