簡易檢索 / 詳目顯示

研究生: 白凱仁
Kai-Jun Pai
論文名稱: 液晶顯示器背光電源之分析與設計
Analysis and Design of LCD Backlight Power Supplies
指導教授: 羅有綱
Yu-kang Lo
口試委員: 潘晴財
Ching-tsai Pan
邱煌仁
Huang-jen Chiu
劉昌煥
Chang-huan Liu
謝冠群
Guan-chyun Hsieh
劉添華
Tian-hua Liu
陳建富
Jiann-fuh Chen
梁從主
Tsorng-juu Liang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 144
中文關鍵詞: 背光電源壓電變壓器轉導控制小信號模型紅綠藍發光二極體串聯諧振轉換器相移式脈衝寬度調變調光
外文關鍵詞: backlight power supply, piezoelectric transformer, trans-admittance control, small signal model, RGB LEDs, series resonant converter, phase-shifted PWM dimming.
相關次數: 點閱:511下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究範疇為液晶顯示器背光電源之分析與設計,首先提出一種結合壓電變壓器驅動冷陰極管之半橋諧振換流器,並利用轉導控制策略完成穩定冷陰極管驅動電流與燈管之功率及亮度。其次,壓電變壓器之溫昇將會造成諧振換流器輸出電壓與電流極大之變化,因此,本文利用轉導控制策略,藉由擷取壓電變壓器初級側與次級側信號,輸入除法器計算壓電元件因溫度所造成諧振頻率與之偏移量與轉導之變化量,進而藉由類比除法器輸出一電壓準位,調變電壓控制振盪器之輸出頻率,追蹤壓電諧振換流器合適之操作頻率,進而穩定冷陰極管驅動電流與亮度。本文中將說明主電路架構與控制電路之分析,同時提供一設計實例並藉由實驗結果驗證所提之壓電諧振換流器轉導控制策略的正確性。
    其次,本文利用諧波近似與諧波平衡程序建立壓電諧振換流器之小信號動態方程式,並根據此動態方程式設計回授補償器。本文中將說明主電路架構與回授補償器之小信號動態分析,同時提出系統補償設計實例並加以分析,最後藉由實測結果驗證所提之壓電諧振換流器補償策略的正確性。
    再者,本文提出一種結合串聯諧振直流-直流轉換器與脈衝寬度調光相移技術,完成19吋紅綠藍發光二極體背光模組之驅動。首先,串聯諧振直流-直流轉換器作為高功率發光二極體陣列之驅動電源,因此,串聯諧振轉換器之零電壓切換功效,可有效降低電源轉換器之電磁干擾雜訊。其次,由於串聯諧振直流-直流轉換器在空載操作時穩壓效果不佳,因此,本文利用相移式脈衝寬度調光技術改善上述之缺陷。再者,為了完成背光模組白平衡與亮度穩定之目的,本文利用磁滯控制方式作為數位訊號處理器之調光演算法,藉此改善一般調光演算法,採用數位比例-積分補償器其軟體流程過於複雜之缺陷。本文中將說明串聯諧振直流-直流轉換器與相移式脈衝寬度調光技術之設計,同時並提出一設計實例加以分析,最後藉由實測結果驗證所提光學回授補償之可行性。


    The object of this dissertation is the analysis and design of backlight power supplies for liquid crystal displays (LCDs). A half-bridge (HB) resonant inverter with a piezoelectric transformer (PT) for driving a cold cathode fluorescent lamp (CCFL) backlight module is proposed and analyzed. The trans-admittance of the PT-CCFL combination network is measured to track the operating frequency for the HB resonant inverter, which may be varied due to the temperature rise of PT. The lamp driving current and power can thus be remained almost constant in a wide temperature range. Experiments show that the observed result matches the theoretical analyses.
    The feedback loop design of the discussed PT-based HB resonant inverter is presented to stabilize the CCFL driving current and luminance by tracking the operating frequency. The dynamic equations and the small-signal model of the presented inverter system are established by using the harmonic approximation and harmonic balance procedures. The complete mathematical analysis and design considerations are derived. The experimental results agree with the theoretical predictions and confirm the validity of the proposed design approach.
    A backlight module driver driving high-power red, green, and blue light emitting diodes (RGB LEDs) for a 19-inch LCD is proposed. DC-to-DC series resonant converters (SRCs) with zero-voltage switching (ZVS) and constant-output-current control are implemented to drive the RGB LED arrays. Phase-shifted pulse width modulation (PSPWM) dimming signals are adopted to improve the output voltage regulations of the SRCs at light loads. In order to track the brightness and color temperature, the hysteresis control algorithm is performed by a digital signal processor (DSP). Analysis and design considerations of the proposed drivers are presented. Experimental results agree well with the theoretical predictions and confirm the validity of the proposed approach.

    中文摘要 英文摘要 誌謝 目錄 圖表索引 符號索引 第一章 緒論 1-1 研究背景 1-2 研究動機與目的 1-2 論文綱要 第二章 液晶顯示器之背光光源 2-1 前言 2-2 冷陰極螢光燈管 2-3 外部電極螢光燈管 2-4 平面螢光燈 2-5 發光二極體 第三章 單組冷陰極管之背光電源 3-1 電磁式變壓器驅動冷陰極管 3-1-1 前言 3-1-2 半橋串聯諧振換流器驅動冷陰極管 3-1-3 一般調光控制策略 3-1-4 差值積分器之調光控制策略 3-1-5 設計考量與實測結果 3-1-6 結語 3-2 壓電變壓器驅動冷陰極管 3-2-1 前言 3-2-2 壓電諧振換流器之轉導控制策略 3-2-3 設計考量與實驗結果 3-2-4 結語 3-3 壓電諧振換流器之回授控制策略 3-3-1 前言 3-3-2 建立壓電諧振換之小信號動態方程式 3-3-3 回授補償器之設計 3-3-4 實驗結果 3-3-5 結語 第四章 發光二極體陣列之相移式脈衝寬度調變調光 4-1 前言 4-2 串聯諧振直流-直流轉換器 4-3 相移式脈衝寬度調變調光技術 4-4 設計考量 4-5 實驗結果 4-6 結語 第五章 結論與未來展望 5-1 結論 5-2 未來展望 參考文獻 附錄A 附錄B 作者簡歷

    [1] H. K. Hong, H. H. Shin, and I. J. Chung, “In-plane switching technology for liquid crystal display television,” IEEE Trans. Display Technology, vol. 3, no. 4, pp. 361-370, Dec. 2007.
    [2] T. N. Ruckmongathan and A. R. Shashidhara, “Sparse orthogonal matrices for scanning liquid crystal displays,” IEEE Trans. Display Technology, vol. 1, no. 2, pp. 240-247, Dec. 2005.
    [3] S. J. Ashtiani and A. Nathan, “A driving scheme for active-matrix organic light-emitting diode displays based on feedback,” IEEE Trans. Display Technology, vol. 2, no. 3, pp. 258-264, Sept 2006.
    [4] K. H. Yi, S. K. Han, S. W. Choi, C. E. Kim, and G. W. Moon, “A simple and highly efficient energy recovery circuit for a plasma display panel (PDP),” IEEE Trans. Industrial Electronics, vol. 55, no. 2, pp. 782-790, Feb. 2008.
    [5] E. Scbeibler and T. S. Fablen, “Candescent's vision for field emission flat panel displays,” in IEEE Proc. IVMC’01, 2001, pp. 175-176.
    [6] Wellypower Optronics Corp. (2008, May 10). [Online]. Available: http://www.wellypower.com.tw/
    [7] Harison Application Note, Harison Toshiba Lighting Corp., Cold Cathode Fluorescent Lamps, 2004.
    [8] Y. J. Lee, W. S. Oh, S. S. Lee, and G. W. Moon, “Comparative study on sinusoidal and square wave driving methods of EEFL (External Electrode Fluorescent Lamp) for LCD TV backlight,” in IEEE Proc. PESC’05, 2005, pp. 1113-1117.
    [9] D. Y. Cho, Y. J. Lee, K. M. Cho, W. S. Oh, G. W. Moon, S. G. Leet, and M. S. Park, “A study on luminescence and discharge characteristics of EEFL (External Electrode Fluorescent Lamp) driven by square wave,” in IEEE Proc. PESC’06, 2006, pp. 1-5.
    [10] G. G. Cho, N. O. Kwon, Y. M. Kim, S. J. Kim, T. S. Cho, B. S. Kim, J. G. Kang, E. H. Choi, U. W. Lee, S. C. Yang, and H. S. Uhm, “Self-discharge synchronizing operations in the external electrode fluorescent multi-lamps backlight,” Journal of Physics (D), vol. 36, pp. 2526-2530, 2003.
    [11] W. S. Oh, K. M. Cho, and G. W. Moo, “Study on driving methods of EEFL inverter for 32-inch LCD TV backlight,” in IEEE Proc. PESC’06, 2006, pp. 1-5.
    [12] Osram Application Note, Osram Corp., Xenon excimer discharge flat fluorescent lamp system, PLANON, 2002.
    [13] T. Shiga, S. Mikoshiba, and S. Shinada, “Mercury-free, high-luminance and high-efficacy flat discharge lamp LCD backlight,” Journal of Electronics and Communications in Japan, vol. J83-C, no. 8, pp. 326-333, April 2000.
    [14] Nulight Tech. Corp. (2008, May 10). [Online]. Available: http://www.nlt.com.tw/
    [15] J. W. Lee, J. C. Jung, B. J. Oh, I. W. Seo, J. K. Kim, and K. W. Whang, “The electro-optic characteristics of MMFL (mercury-free flat fluorescent lamp) for LCD backlighting,” in SID Proc. SID’06, vol. 37, no. 2, 2006, pp. 1422-1424.
    [16] E. F. Schubert, Light-emitting diodes. New Youk: Cambridge University Press, 2006.
    [17] J. Singh, Optoelectronics. USA: McGraw-Hill, 1996.
    [18] 莊賦詳,「藍綠光發光二極體」,科學發展,第349期,pp. 47-53,Jan. 2002。
    [19] G. Zorpette, “Let there be light,” IEEE Trans. Spectrum, vol. 39, no. 9, pp. 70-74, Sept. 2002.
    [20] Y. L. Lin and A. F. Witulski, “Analysis and design of current-fed push-pull resonant inverters-cold cathode fluorescent lamp drivers,” in IEEE Proc. IAS’96, vol. 4, 1996, pp. 2149-2152.
    [21] M. S. Lin, W. J. Ho, F. Y. Shih, D. Y. Chen, and Y. P. Wu, “A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control,” IEEE Trans. Industrial Electronics, vol. 45, no. 2, pp. 249-255, April 1998.
    [22] G. C. Hsieh, C. H. Lin, C. H. Lin, and H. I. Hsieh, “Primary-side charge-pump dimming controller for the cold-cathode fluorescent lamp ballast,” in IEEE Proc. TENCON'01, 2001, vol. 2, pp. 717-723.
    [23] M. Jordan, and J. A. O’Connor, “Resonant fluorescent lamp converter provides efficient and compact solution,” in IEEE Proc. APEC’93, 1993, pp. 424-431.
    [24] J. A. Sierra, and W. Kaiser, “Comparison of fluorescent lamp stabilization methods in the current-fed push-pull inverter,” in IEEE Proc. IAS’98, 1998, pp. 2099-2104.
    [25] C. S. Moo, W. M. Chen, and H. K. Hsien, “Electronic ballast with piezoelectric transformer for cold cathode fluorescent lamps,” IEE Proc. Electric Power Applications, vol. 150, no. 3, pp. 278-282, 2003.
    [26] C. D. Wey, T. L. Jong, and C. T. Pan, “Design and analysis of an SLPT-based CCFL driver,” IEEE Trans. Industrial Electronics, vol. 50, no. 1, pp. 208-217, 2003.
    [27] Fairchild Semiconductor Data Manual, Fairchild Semiconductor Inc., RC4200, 2001.
    [28] Panasonic Application Note, Matsushita Electronic Components Inc., Piezoelectric Transformers, EFTU14R0M01A, 2003.
    [29] J. S. Lee, Y. H. Lee, H. I. Chai, M. S. Yoon, and K. J. Lim, “The characteristics of new piezoelectric ballast for fluorescent T8 lamp,” in IEEE Proc. ISIE01, 2001, vol. 2, pp. 947-951.
    [30] Texas Instruments Data Manual, Texas Instruments Inc., UCC3977, 2002.
    [31] P. J. M. Smidt, and J. L. Duarte, “Powering neon lamps through piezoelectric transformers,” in IEEE Proc. PESC’96, vol. 1, 1996, pp. 310-315.
    [32] D. O. Hur, T. K. Kang, C. H. Cho, H. M. Lee, H. K. Ahn, and D. Y. Han, “Design and fabrication of piezoelectric ceramic transformers for the LCD backlight,” in IEEE Proc. ICPAD’97, vol. 2, 1997, pp. 843-846.
    [33] C. H. Lin, “The design and implementation of a new digital dimming controller for the backlight resonant inverter,” IEEE Trans. Power Electronics, vol. 20, no. 6, pp. 1459-1466, 2005.
    [34] C. H. Lin and K. J. Pai, “Difference-integral dimming controller for the single-stage back-lighting electronic ballast,” in IEEE Proc. PESC’03, vol. 3, 2003, pp. 1000-1005.
    [35] S. J. Choi, K. C. Lee, and B. H. Cho, “Design of fluorescent lamp ballast with PFC using a power piezoelectric transformer,” IEEE Trans. Industrial Electronics, vol. 52, no. 6, pp. 1573-1581, Dec. 2005.
    [36] S. Ben-Yaakov and S. Lineykin, “Maximum power of piezoelectric transformer HV converters under load variations,” IEEE Trans. Power Electronics, vol. 21, no. 1, pp. 73-78, Jan. 2006.
    [37] O. Ojo and I. Bhat, “Steady-state and dynamic analyses of high-order parallel resonant converters,” IEE Proc. Electric Power Applications, vol. 140, no. 3, pp. 209-216, May 1993.
    [38] L. Y. Chiu, and B. M. Diong, “Small-signal modeling of the current-source parallel resonant DC/DC converter,” in Proc. IEEE CIEP’02, 2002, pp. 20-34.
    [39] E. X. Yang, F. C. Lee, and M. M. Jovanovic, “Small-signal modeling of LCC resonant converter,” in Proc. IEEE PESC’92, vol. 2, 1992, pp. 941-948.
    [40] G. Spiazzi, and S. Buso, “Small-signal analysis of cold cathode fluorescent lamp ballasts,” in Proc. IEEE PESC’05, 2005, pp. 2783-2789.
    [41] I. Etxeberria-Otadui, A. L. D. Heredia, H. Gaztanaga, S. Bacha, and M. R. Reyero, “A single synchronous frame hybrid (SSFH) multifrequency controller for power active filters,” IEEE Trans. Industrial Electronics, vol. 53, no. 5, pp. 1640-1648, Oct. 2006.
    [42] K. H. Lee and S. W. R. Lee, “Process development for yellow phosphor coating on blue light emitting diodes (LEDs) for white light illumination,” in Proc. Electronics Packaging Technology Conference, 2006, pp. 379-384.
    [43] X. H. Cao and S. Y. Hui, “Use of auxiliary resonant tank to ensure soft-switching in high frequency electronic ballasts for metal halide lamps,” IEEE Trans. Power Electronics, vol. 21, no. 5, pp. 1437-1443, Sept. 2006.
    [44] X. Jin, W. Wu, X. Sun, and J. Liu, “Resonant tank and transformer design in series resonant converter,” in IEEE Proc. IAS’05, vol. 2, 2005, pp. 1475-1482.
    [45] S. Muthu and J, Gaines, “Red, green and blue LED-based white light source: implementation challenges and control design,” in IEEE Proc. IAS’03, 2003, vol. 1, pp. 515-522.
    [46] C. C. Chen, C. Y. Wu, Y. M. Chen, and T. F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electronics, vol. 22, no. 3, pp. 919-925, May 2007.
    [47] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics. USA: John Wiley & Sons, 2003, pp. 301-313.
    [48] H. Broeck, G. Sauerlander, and M. Wendt, “Power driver topologies and control schemes for LEDs,” in IEEE Proc. APEC’07, 2007, pp. 1319-1325.
    [49] G. C. Chryssis, High-frequency switching power supplies. USA: McGraw-Hill, 1989, pp. 52-57.
    [50] S. F. Chen “LED driving apparatus,” TW Patent I236169, July 11, 2005.
    [51] Austriamicrosystems Application Note, Austriamicrosystems Inc., AN3691, 2005.
    [52] H. J. Chiu, and S. J. Cheng, “LED backlight driving system for large-scale LCD panels,” IEEE Trans. Industrial Electronics, vol. 54, no. 4, pp. 2751-2760, Oct. 2007.
    [53] A. K. S. Bhat, A. Biswas, and B. S. R. Iyengar, “Analysis and design of (LC)(LC)-type series-parallel resonant converter,” IEEE Trans. Aerospace and Electronic Systems, vol. 31, no. 3, pp. 1186-1193, July 1995.
    [54] S. Dalapati, S. Ray, S. Chaudhuri, and C. Chakraborty, “Control of a series resonant converter by pulse density modulation,” in IEEE Proc. INDICON’04, 2004, pp. 601-604.
    [55] Lumileds Application Note, Lumileds Inc., “Luxeon DCC for LCD backlight,”AB27, Jan. 2005.
    [56] S. Muthu, F. J. Schuurmans, and M. D. Pashley, “Red, green, and blue LED based white light generation: issues and control,” in IEEE Proc. IAS’02, 2002, vol. 1, pp. 13-18.
    [57] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electronics, vol. 20, no. 4, pp. 963-973, May 2007.
    [58] J. H. Park, J. Y. Ahn, B. H. Cho, and G. J. Yu, “Dual-module-based maximum power point tracking control of photovoltaic systems,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1036-1047, July 2005.
    [59] C. H. Lin, Y. Lu, and K. J. Pai, “Digital-dimming controller with current spikes elimination technique for LCD backlight electronic ballast,” in IEEE Proc. APEC’04, 2004, vol. 1, pp. 153-158.
    [60] C. H. Lin, L. R. Chen, and K. J. Pai, “An improved digital-dimming controller for Back-light Module applying frequency-shift technique,” in IEEE Proc. IECON’03, 2003, pp. 496-501.
    [61] C. H. Lin, L. R. Chen, and K. J. Pai, “Application of soft-starting technique to improve digital-dimming behavior for backlight module,” in IEEE Proc. INTELEC’03, 2003, pp. 727-732.
    [62] S. Yang, S. Lee, H. Kim, H. Lee, H. Mok, and G. Choe, “A new current balancing methods of CCFL for LCD TV backlight,” IEEE-PESC Conference Record, pp. 1-5, 2006.
    [63] 余志宏,「雙高壓燈管驅動方法及其驅動迴路」,中華民國專利公告(公開)號:I258726,中華民國九十五年七月二十一號。
    [64] X. P. Jin, “Primary side current balancing scheme for multiple CCF lamp operation,” US Patent 2007/0267979 A1, Nov. 2007.
    [65] Microsemi Application Note, Microsemi Inc., “High performance multi-lamp CCFL controller,” LX6501, Aug. 2007.

    QR CODE