簡易檢索 / 詳目顯示

研究生: Getu Sitotaw Tesfaye
Getu Sitotaw Tesfaye
論文名稱: 利用變溫光致螢光和時間解析光致螢光探測無機三鹵化鉛鈣鈦礦的放光機制
Probing the emission mechanism of inorganic lead trihalide perovskites via temperature-dependent PL and TR-PL
指導教授: 林碧軒
Bi-Hsuan Lin
邱昱誠
Yu-Cheng Chiu
蘇威年
Wei-Nien Su
口試委員: 林碧軒
Bi-Hsuan Lin
邱昱誠
Yu-Cheng Chiu
莊偉綜
Wei-Tsung Chuang
湯茂竹
Mau-Tsu Tang
蘇威年
Wei-Nien Su
童世煌
Shih-Huang Tung
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 114
中文關鍵詞: PerovskitesCr-摻雜 CsPbCL3PLTR-PL自由激子和束縛激子XRF 和 XAS
外文關鍵詞: Perovskites, Cr-doped CsPbCL3, PL, TR-PL, Free and Bound exciton, XRF and XAS
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本篇論文重點探討過渡金屬和稀土離子摻雜的無機鉛鹵素鈣鈦礦磷光體。目前,磷光體被認為是具有很高研究潛力的材料,在生物醫學應用和固態照明等多個領域表現出色,這要歸功於它們的高發光效率、耐熱性、化學穩定性和長壽命。磷光體材料的特點是它們具有能量轉移機制,使得其發射釋放具有高相對色溫和演色數值的白光輻射。含有磷光體的材料由基材和活化劑組成。可以考慮的基材通常包括氮化物、氧化物、氧氮化物、硒化物、硫化物、硅酸鹽或無機鉛鹵化物。此外,有機無機鉛鹵素鈣鈦礦是一種可調色磷光體,因為它們具有混合鹵化物的能力。然而,使用無機鉛鹵素鈣鈦礦具有很大挑戰,因為它們容易熱降解。為了克服這個問題,摻雜稀土和過渡金屬離子是一種替代方法。
    在我們的第一項研究中,我們使用溫度相關光致發光(PL)和時間解析光致發光(TR-PL)來研究Cr摻雜CsPbCl3的載子復合機制。由於Cr摻雜的非均勻性,觀察到激子局部區域化現象。這一特性不僅可以在溫度相關光致發光中觀察到,其中在低於100 K的溫度下發射強度迅速增加,而且也可以在溫度相關的時間解析光致發光中觀察到,其中在20 K至100 K的溫度範圍內,輻射壽命的溫度相關性呈現線性依賴關係。
    此外,不同溫度下的時間解析光致發光光譜結果顯示,輻射和非輻射復合的壽命在20 K至300 K之間有所變化。輻射復合壽命的變化與非輻射復合速率一致,而非輻射復合壽命的變化與低室溫下鈣鈦礦的內部量子效率相符。這些發現表明,存在一種簡單的計算內部量子效率的方法,可用於與基於溫度相關光致發光測量的傳統方法相關聯。此外,還研究了20 K下,Cr摻雜CsPbCl3鈣鈦礦之光致發光衰變壽命作為控制放光能量的函數。結果表明,Cr摻雜CsPbCl3鈣鈦礦激子具有很高的局部區域化程度(Eloc)。本文使用的方法有望為研究無機鉛三鹵化物鈣鈦礦放光性能方面的特性開辟具有巨大表徵能力的新途徑。
    在第二項研究中,溫度相關光致發光(PL)和時間解析光致發光(TR-PL)也被用來研究Eu摻雜CsPbBr3中束縛和自由激子的復合機制。周圍熱浴中能量的缺失以及溫度的降低導致激子的捕捉增加和束縛激子的形成。當溫度從300 K降至10 K時,束縛激子的放光強度明顯降低。束縛激子的放光強度在T = 100 K時出現,並隨著溫度降至10 K迅速增加。這是由於更豐富的Eu3+離子導致束縛激子和自由激子之間的熱能動態遷移。通過分析不同激發功率下的光致發光光譜,可以證明Eu摻雜CsPbBr3的激子般發射。此外,溫度相關之時間解析光致發光被用來確定束縛激子的輻射和非輻射復合。分別在10 K、60 K和90 K下研究了Eu摻雜CsPbBr3鈣鈦礦磷光體中光致發光壽命與放光能量以及束縛激子PL光譜,以確定束縛激子的局部區域化程度隨溫度降低而提高。另一方面,隨著溫度降低,束縛激子的局部區域深度(Eloc)增加。因此,束縛激子強度的增加是由於局部區域深度隨溫度降低而增加所引起的。


    Abstract

    This thesis highlights about transition metal and rare earth ion-doped inorganic lead halide perovskite phosphors. Currently, Phosphors are generally considered materials that appear to be very promising in a variety of fields of research, including biomedical applications and solidstate lighting, due to their high efficiency of luminescence, resistance to heat, chemical stability, and long lifetime. A mechanism for transferring energy, which allowing their emission to release white light radiation with a high CCT and CRI is the profile features of phosphor materials. Materials containing phosphors are made up of host materials and activators. The host materials that can be considered are typically nitrides, oxides, oxynitrides, selenides, sulfides, silicates or inorganic lead halides. Furthermore, organic-inorganic lead halide perovskites one of color tunable phosphors due to the mixing capability of halides. However, using inorganic lead halide perovskites is very challenging due to their thermal degradation. To overcome this problem, doping rare earth and transition metal ions is one of the alternative methods.
    In our first work temperature-dependent-photoluminescence (PL) and time-resolved-PL (TR-PL) were used to examine the carrier recombination mechanism of Cr-doped CsPbCl3. Exciton localization is observed as a result of non-uniform Cr doping. This property can be seen not only in temperature-dependent-PL, where the intensity of emission increases rapidly at temperatures below 100 K, but also in temperature-dependent-TR-PL, where radiative lifetime temperature dependence at temperatures ranging from 20 K - 100 K shows a linear dependence.
    Furthermore, the results of TRPL spectroscopy at various temperatures reveal that both Lifetimes of radiative and non-radiative recombination vary from 20 K to 300 K. The variation in the lifetime of radiative recombination is consistent with the non-radiative recombining rate, whereas the non-radiative recombining lifetime variation is compatible with the internal quantum efficiency of perovskite from low room temperature. These findings imply that there is a simple method for calculating internal quantum efficiency that can be used in related to the traditional method based on temperature-dependent photoluminescence measurement. Besides, the Cr-doped CsPbCl3 perovskite PL decay lifetimes at 20 K are investigated as a function of controlling emission energies. The results show that the Cr-doped CsPbCl3 perovskite excitons have a high degree of localization (Eloc). The methods used in this paper are expected to open up new paths with tremendous characterization capability for studying inorganic lead trihalide perovskites' properties in terms of emission.
    In the second work, temperature-dependent-PL and TR-PL were also used to examine the recombination mechanisms of excitons, both bound and free, in Eu-doped CsPbBr3. The lack of energy in the surrounding thermal bath coupled with a decrease in temperature causes a rise in the trapping of excitons and the formation of bound excitons. The emission intensity of bound excitons decreases noticeably as the temperature drops from 300 K - 10 K. The bound exciton emission intensity appears at T = 100 K and rapidly increases as the temperature decreases to 10 K. This is due to the richer Eu3+ ion causing dynamic migration of thermal energy between bound excitons and free excitons. The exciton-like emission of Eu-doped CsPbBr3 can be demonstrated by analyzing the PL spectra under different excitation powers. Besides, the temperature-dependent TR-PL was used to determine the radiative and non-radiative recombination of the bound exciton. The PL lifetime versus emission energy, as well as bound exciton PL spectra in Eu-doped CsbBr3 perovskite phosphor at 10 K, 60 K, and 90 K, respectively were studied to confirm the degree of localization of bound exciton raise as the temperature drops. On the other hand, as the temperature drops, the localization depth (Eloc) of bound excitons increases. As a result, a rise in intensity of bound exciton is caused by the localization depth increasing with decreasing temperature.

    Table of Contents pages Declaration i Acknowledgement ii 摘要 iii Abstract v List of Abbreviations xv CHAPTER ONE 1 1 Background 1 1 .1 Phosphor materials 1 1.1.1 General properties of phosphor materials 4 1.1. 2 Phosphors for light conversion physics 4 1.1.3 Components of phosphor materials 5 1. 2 Dissertation organization 5 CHAPTER TWO 7 2 Literature Review 7 2. 1 Inorganic cesium lead halides and their phosphorescent unique properties 7 2.1.1 Properties of Cesium lead halide perovskites CsPbX3 7 2.1.1.1 Crystal structure of Cesium lead halide perovskites 7 2.1.2 Temperature dependent photoluminescence properties of CsPbX3 perovskites 9 2.1.2.1 Temperature dependent structure of CsPbX3 perovskites 10 2.1.3 Chemical bonds of CsPbX3 perovskites 11 2.1.3.1 Substitutions at the A site 12 2.1.3.2 Substitutions at the B site 13 2.1.3.3 Substitutions at the X site 13 2.1.4 Color tunability and LED features of lead halide perovskite phosphors 14 2.2 The role of dopant metal ions in CsPbX3 perovskites 15 2.2.1 Doping lead halide perovskites with alkali metals 16 2.2.2 Doping lead halide perovskites with alkaline-earth metals 16 2.2.3 Transition metal (TM) ions and their role in LED phosphors 16 2.2.3.1 Doping lead halide perovskites with transition metals 17 2.2.4 Lanthanide ions' doping and their role in LED phosphors 18 2.2.4.1.1 Phosphors that emit blue light 20 2.2.4.1.2 Phosphors that emit green light 21 2.2.4.1.3 Phosphors that emit red light 22 2.3 The basic applications of inorganic phosphors 22 2.3.1 Solar application 22 2.3.2 Application of light-emitting diodes 23 2.3.2.1 Doped perovskite with RE ions for phosphor-conversion LEDs 23 2.3.2.2 Doped perovskite with RE ions for electrically driven LEDs 24 2.3.3 Photodetectors 25 2.3.4 Perovskite’s application in bioengineering 25 2.3.4.1 Detection of Biological Agents 26 2.3.4.2 Bio-imaging 26 2.3.5 Photocatalysis application 27 2.3.5.1 Reaction of photocatalytic CO2 reduction 28 2.3.5.2 H2 Evolution via inorganic lead halide perovskite Photocatalysis 29 2.4 Challenges in inorganic lead halide perovskites 29 2.4.1 Extrinsic variables(factors) 30 2.4.1.1 Moisture 30 2.4.1.2 Ultraviolet radiation 31 2.4.1.3 Temperature 31 2.4.1.4 Oxygen 31 2.4.2 Intrinsic factors 32 2.4.2.1 Ion and hole migration 32 2.5 Objective of the study 33 2.6 Significance of the study 33 CHAPTER THREE 34 3 Probing the carrier recombination mechanisms of Cr-doped CsPbCl3 via Temperature-dependent photoluminescence (TD-PL) and TR-PL 34 3.1 Introduction 34 3.2 Experimental section 37 3.2.1 Chemicals 37 3.2.2 Synthesis of Cr- doped CsPbCl3 perovskite 38 3.2.3 Characterization 39 3.2.3.1 Photoluminescence and time resolved photoluminescence 39 3.2.3.2 XRF and XAS spectroscopies 40 3.3 Result and discussion 41 3.3.1 The XRF mapping analysis 41 3.3.2 Temperature dependent photoluminescence (TD-PL) results 42 3.3.3 Temperature dependent time resolved photoluminescence (TR-PL) results 46 3.4 Conclusion 53 CHAPTER FOUR 54 4 Probing the free and bound excitons in Eu-doped CsPbBr3 via temperature-dependent-PL and TR-PL 54 4.1 Introduction 54 4.2 experimental section 56 4.2.1 Chemicals 56 4.2.2 Synthesis of Eu-doped CsPbBr3 samples 57 4.2.3 Characterization 57 4.3 Result and discussion 58 4.3.1 Electron paramagnetic resonance (EPR), XRD and SEM results 58 4.3.2 Temperature dependent photoluminescence (TD-PL) spectral results 59 4.3.3 power dependent photoluminescence (PD-PL) spectral results 64 4.3.4 Temperature dependent time resolved photoluminescence (TD-TR-PL) analysis 65 4.3.5 XRF mapping and XAS spectral descriptions 72 4. 4 Conclusion 74 CHAPTER FIVE 76 5 General summary and future perspective 76 5.1 Summary 76 5.2 Future perspective and recommendation 78 Reference 79 Appendix: A 93 Appendix: B 94

    Reference

    [1] L. Fernández-Rodríguez, A. Durán, M.J. Pascual, Silicate-based persistent phosphors, Open Ceramics, 7 (2021).
    [2] E.F. Schubert, J.K. Kim, Solid-state light sources getting smart, Science, 308 (2005) 1274-1278.
    [3] M.-H. Fang, Z. Bao, W.-T. Huang, R.-S. Liu, Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes, Chem. Rev., 122 (2022) 11474-11513.
    [4] D. Poelman, D. Van der Heggen, J. Du, E. Cosaert, P.F. Smet, Persistent phosphors for the future: Fit for the right application, J. Appl. Phys., 128 (2020) 240903.
    [5] B. Lei, B. Li, X. Wang, W. Li, Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor, J. lumin., 118 (2006) 173-178.
    [6] M.-H. Fang, J.L. Leaño Jr, R.-S. Liu, Control of narrow-band emission in phosphor materials for application in light-emitting diodes, ACS Ener. Lett., 3 (2018) 2573-2586.
    [7] Y.-C. Lin, M. Karlsson, M. Bettinelli, Inorganic phosphor materials for lighting, Photolumin. Mater.. Electrolumin.Dev., (2017) 309-355.
    [8] M.-H. Fang, Z. Bao, W.-T. Huang, R.-S. Liu, Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes, Chem. Revie., 122 (2022) 11474-11513.
    [9] P. Dang, D. Liu, G. Li, A.A. Al Kheraif, J. Lin, Recent advances in bismuth ion‐doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs, Adv. Opt. Mater., 8 (2020) 1901993.
    [10] B.A. Rosales, M.P. Hanrahan, B.W. Boote, A.J. Rossini, E.A. Smith, J. Vela, Lead halide perovskites: Challenges and opportunities in advanced synthesis and spectroscopy, ACS Ener.Lett., 2 (2017) 906-914.
    [11] Z. Chen, J. Zhao, R. Zeng, X. Liu, B. Zou, W. Xiang, High efficiency fluorescent perovskite quantum dots encapsulated in superhydrophobic silica aerogel for wide color gamut backlight displays, Chem. Engin. J., 433 (2022) 133195.
    [12] R. Sun, D. Zhou, H. Song, Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices, Nano Select., 3 (2022) 531-554.
    [13] T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S.-i. Orimo, Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds, Sci. rep., 6 (2016) 1-10.
    [14] J. Deng, J. Li, Z. Yang, M. Wang, All-inorganic lead halide perovskites: a promising choice for photovoltaics and detectors, J. Mater.Chem. C, 7 (2019) 12415-12440.
    [15] W. Wu, W. Liu, Q. Wang, Q. Han, Q. Yang, Temperature-dependent photoluminescence of pure and Mn-doped CsPbCl3 nanocrystals, J. Alloys Compd., 787 (2019) 165-172.
    [16] K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, T. Jiang, Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots, Opt. lett., 41 (2016) 3821-3824.
    [17] Q. Han, W. Wu, W. Liu, Q. Yang, Y. Yang, Temperature-dependent photoluminescence of CsPbX3 nanocrystal films, J. Lumin., 198 (2018) 350-356.
    [18] S. Huang, S. Yang, Q. Wang, R. Wu, Q. Han, W. Wu, Cs 4 PbBr 6/CsPbBr 3 perovskite composites for WLEDs: pure white, high luminous efficiency and tunable color temperature, RSC adv., 9 (2019) 42430-42437.
    [19] L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M.I. Bodnarchuk, Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals, ACS nano, 11 (2017) 3119-3134.
    [20] A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C.C. Stoumpos, M.G. Kanatzidis, J. Even, Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells, ACS nano, 12 (2018) 3477-3486.
    [21] Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, X. Duan, Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications, Nano Res., 10 (2017) 1223-1233.
    [22] R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, M.T. Hörantner, M.B. Johnston, A.A. Haghighirad, D.T. Moore, Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells, Adv.Ener.Mater., 6 (2016) 1502458.
    [23] M. Pazoki, T. Edvinsson, Metal replacement in perovskite solar cell materials: chemical bonding effects and optoelectronic properties, Sust. Ene. Fue., 2 (2018) 1430-1445.
    [24] M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science, 358 (2017) 745-750.
    [25] Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals, Nat.mater., 17 (2018) 394-405.
    [26] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Ener. Environ.Sci., 7 (2014) 982-988.
    [27] G.E. Eperon, D.S. Ginger, B-site metal cation exchange in halide perovskites, ACS Ener. Lett., 2 (2017) 1190-1196.
    [28] S. Zhu, D. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities, Adv. Ener. Mater., 7 (2017) 1700841.
    [29] J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, CsPb0. 9Sn0. 1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability, J. Ame.Chem.Soci., 139 (2017) 14009-14012.
    [30] M. Pazoki, T.J. Jacobsson, A. Hagfeldt, G. Boschloo, T. Edvinsson, Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals, Phys. Rev.B, 93 (2016) 144105.
    [31] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338 (2012) 643-647.
    [32] B.-M. Bresolin, Y. Park, D.W. Bahnemann, Recent progresses on metal halide perovskite-based material as potential photocatalyst, Catalysts, 10 (2020) 709.
    [33] M. Luo, Y. Jiang, T. He, M. Yuan, Metal halide perovskites for blue light emitting materials, APL. Mater., 8 (2020) 040907.
    [34] N.K. Kumawat, A. Dey, A. Kumar, S.P. Gopinathan, K. Narasimhan, D. Kabra, Band gap tuning of CH3NH3Pb (Br1–x Cl x) 3 hybrid perovskite for blue electroluminescence, ACS. Appl,Mater. Inter., 7 (2015) 13119-13124.
    [35] X. Zhao, B. Guo, H. Wu, Y. Liang, P.X. Ma, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing, Nat. commun., 9 (2018) 2784.
    [36] P. Vashishtha, M. Ng, S.B. Shivarudraiah, J.E. Halpert, High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers, Chem. Mater., 31 (2018) 83-89.
    [37] P. Wang, B. Dong, Z. Cui, R. Gao, G. Su, W. Wang, L. Cao, Environmentally-friendly synthesis of highly luminescent cesium lead halide perovskite nanocrystals using Sn-based halide precursors, Inorg. Chim.Acta., 467 (2017) 251-255.
    [38] Y. Zhou, J. Chen, O.M. Bakr, H.-T. Sun, Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications, Chem.Mater., 30 (2018) 6589-6613.
    [39] D.J. Kubicki, D. Prochowicz, A. Pinon, G. Stevanato, A. Hofstetter, S.M. Zakeeruddin, M. Grätzel, L. Emsley, Doping and phase segregation in Mn 2+-and Co 2+-doped lead halide perovskites from 133 Cs and 1 H NMR relaxation enhancement, J. Mater.Chem. A, 7 (2019) 2326-2333.
    [40] M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown, S. Bai, J.T.-W. Wang, X. Dang, V. Bulović, H.J. Snaith, Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties, Ener.Environ. Sci., 10 (2017) 236-246.
    [41] S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong, Stabilizing cesium lead halide perovskite lattice through Mn (II) substitution for air-stable light-emitting diodes, J. Ame. Chem.Soci., 139 (2017) 11443-11450.
    [42] B. Philippe, M. Saliba, J.-P. Correa-Baena, U.B. Cappel, S.-H. Turren-Cruz, M. Gratzel, A. Hagfeldt, H. Rensmo, Chemical distribution of multiple cation (Rb+, Cs+, MA+, and FA+) perovskite materials by photoelectron spectroscopy, Chem. Mater., 29 (2017) 3589-3596.
    [43] M. Pazoki, T.J. Jacobsson, A. Hagfeldt, G. Boschloo, T. Edvinsson, Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals, Phys.Rev.B, 93 (2016) 144105.
    [44] G.B. Nair, H. Swart, S. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization, Progre. Mater. Sci., 109 (2020) 100622.
    [45] S. Chakraborty, P. Mandal, R. Viswanatha, Photoluminescence Quenching in CsPbCl3 upon Fe Doping: Colloidal Synthesis, Structural and Optical Properties, Chemistry–An Asian Journal, 17 (2022) e202200478.
    [46] H. Yang, P.H. Holloway, B.B. Ratna, Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals, J. Appl. Phys., 93 (2003) 586-592.
    [47] H.Y. Chen, D.H. Son, Energy and charge transfer dynamics in doped semiconductor nanocrystals, Isra J. Chem., 52 (2012) 1016-1026.
    [48] G.B. Nair, H. Swart, S. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization, Progre. Materials Sci., 109 (2020) 100622.
    [49] X. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu, Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects, Chem. rev., 117 (2017) 4488-4527.
    [50] X. Zhao, Y. Ding, Z. Li, T. Yu, Z. Zou, An efficient charge compensated red phosphor Sr3WO6: K+, Eu3+–For white LEDs, J.alloy. compou., 553 (2013) 221-224.
    [51] F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, nature, 463 (2010) 1061-1065.
    [52] Q. Li, Y. Liu, P. Chen, J. Hou, Y. Sun, G. Zhao, N. Zhang, J. Zou, J. Xu, Y. Fang, Excitonic luminescence engineering in tervalent-europium-doped cesium lead halide perovskite nanocrystals and their temperature-dependent energy transfer emission properties, J. Phys. Chem. C, 122 (2018) 29044-29050.
    [53] B. Zhou, L. Tao, Y. Chai, S.P. Lau, Q. Zhang, Y.H. Tsang, Constructing Interfacial Energy Transfer for Photon Up‐and Down‐Conversion from Lanthanides in a Core–Shell Nanostructure, Angew. Chem. Int. Ed., 55 (2016) 12356-12360.
    [54] T. Takeda, S. Funahashi, R.-J. Xie, N. Hirosaki, Broadband white luminescent phosphor Ba (Si 7− x Al x) Li y (N 10− x+ y O x− y): Eu 2+ with a high color rendering index for solid state lighting, J. Mater. Chem. C, 9 (2021) 5497-5504.
    [55] A.M. Srivastava, C. Ronda, Phosphors, The Electrochem.Soci. Interf., 12 (2003) 48.
    [56] Y.-C. Lin, M. Karlsson, M. Bettinelli, Inorganic phosphor materials for lighting, PL.Mater.Electrolumin.nt Dev., (2017) 309-355.
    [57] A.M. Srivastava, C. Ronda, Phosphors, The Electrochemical Society Interface, 12 (2003) 48.
    [58] R. Sun, D. Zhou, H. Song, Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices, Nano Select, 3 (2022) 531-554.
    [59] B. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers, Sola. ener.mater.sola. cells, 90 (2006) 2329-2337.
    [60] E.P. Yao, Z. Yang, L. Meng, P. Sun, S. Dong, Y. Yang, Y. Yang, High‐brightness blue and white leds based on inorganic perovskite nanocrystals and their composites, Adv. Mater., 29 (2017) 1606859.
    [61] R. Sun, P. Lu, D. Zhou, W. Xu, N. Ding, H. Shao, Y. Zhang, D. Li, N. Wang, X. Zhuang, Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes, ACS Ener. Lett., 5 (2020) 2131-2139.
    [62] B.-X. Wang, G.-Z. Wang, Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator, Appl. Phys. Express, 10 (2017) 034301.
    [63] W. Baekelant, E. Coutino-Gonzalez, J.A. Steele, M.B. Roeffaers, J. Hofkens, Form follows function: warming white LEDs using metal cluster-loaded zeolites as phosphors, ACS Ener. Lett., 2 (2017) 2491-2497.
    [64] G. Pan, X. Bai, W. Xu, X. Chen, D. Zhou, J. Zhu, H. Shao, Y. Zhai, B. Dong, L. Xu, Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet–white light-emitting diode, ACS. appl.mater. interf., 10 (2018) 39040-39048.
    [65] G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, M.V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I), Nano lett., 15 (2015) 5635-5640.
    [66] J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes, J. Am. Chem.Soci., 140 (2018) 3626-3634.
    [67] Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng, J. Zhao, X. Xiao, P. Rudd, A. Moran, Y. Yan, Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement, Nat. commun., 10 (2019) 5633.
    [68] H. Jing, R. Peng, R.-M. Ma, J. He, Y. Zhou, Z. Yang, C.-Y. Li, Y. Liu, X. Guo, Y. Zhu, Flexible ultrathin single-crystalline perovskite photodetector, Nano lett., 20 (2020) 7144-7151.
    [69] Z. Yin, B. Lu, Y. Chen, C. Guo, Advances of Commercial and Biological Materials for Electron Transport Layers in Biological Applications, Front. Bioeng. Biotechnol., (2022) 968.
    [70] X. Wang, Y. Yu, C. Yang, C. Shao, K. Shi, L. Shang, F. Ye, Y. Zhao, Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration, Adv. Funct. Mater., 31 (2021) 2105190.
    [71] P. Chen, W.J. Ong, Z. Shi, X. Zhao, N. Li, Pb‐based halide perovskites: recent advances in photo (electro) catalytic applications and looking beyond, Adv.Funct.Mater., 30 (2020) 1909667.
    [72] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. rev., 95 (1995) 735-758.
    [73] X. Zhu, Y. Lin, J. San Martin, Y. Sun, D. Zhu, Y. Yan, Lead halide perovskites for photocatalytic organic synthesis, Nat. commun., 10 (2019) 2843.
    [74] P. Kanhere, Z. Chen, A review on visible light active perovskite-based photocatalysts, Molecules, 19 (2014) 19995-20022.
    [75] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. rev., 114 (2014) 9919-9986.
    [76] J. Luo, W. Zhang, H. Yang, Q. Fan, F. Xiong, S. Liu, D.S. Li, B. Liu, Halide perovskite composites for photocatalysis: A mini review, EcoMat, 3 (2021) e12079.
    [77] R. Cheng, H. Jin, M.B. Roeffaers, J. Hofkens, E. Debroye, Incorporation of cesium lead halide perovskites into g-C3N4 for photocatalytic CO2 reduction, ACS omega, 5 (2020) 24495-24503.
    [78] J. Liang, D. Chen, X. Yao, K. Zhang, F. Qu, L. Qin, Y. Huang, J. Li, Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications, Small, 16 (2020) 1903398.
    [79] Y. Dong, Y. Zhao, S. Zhang, Y. Dai, L. Liu, Y. Li, Q. Chen, Recent advances toward practical use of halide perovskite nanocrystals, J. Mater.Chem.A, 6 (2018) 21729-21746.
    [80] S. Park, W.J. Chang, C.W. Lee, S. Park, H.-Y. Ahn, K.T. Nam, Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution, Nat. Ener., 2 (2016) 1-8.
    [81] V.O. Eze, L.B. Carani, H. Majumder, M.J. Uddin, O.I. Okoli, Inorganic cesium lead mixed halide based perovskite solar materials modified with functional silver iodide, Sci.Rep., 12 (2022) 7794.
    [82] W. Xiang, S.F. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells, Ener. Environ.Sci., 14 (2021) 2090-2113.
    [83] A. Rajagopal, K. Yao, A.K.Y. Jen, Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering, Adv. Mater., 30 (2018) 1800455.
    [84] G. Yuan, C. Ritchie, M. Ritter, S. Murphy, D.E. Gómez, P. Mulvaney, The degradation and blinking of single CsPbI3 perovskite quantum dots, J. Phys. Chem. C, 122 (2017) 13407-13415.
    [85] S.-W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, UV degradation and recovery of perovskite solar cells, Sci.rep., 6 (2016) 1-10.
    [86] S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan, L. Li, Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination, ACS Appl mater & interf., 9 (2017) 7249-7258.
    [87] B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M. Johansson, H. Rensmo, Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures A Photoelectron Spectroscopy Investigation, Chem. Mater., 27 (2015) 1720-1731.
    [88] N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M.S. Islam, S.A. Haque, Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells, Nat. commun., 8 (2017) 15218.
    [89] G.H. Ahmed, J. Yin, O.M. Bakr, O.F. Mohammed, Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping, J. Chem. Phys., 152 (2020) 020902.
    [90] G.H. Ahmed, J.K. El-Demellawi, J. Yin, J. Pan, D.B. Velusamy, M.N. Hedhili, E. Alarousu, O.M. Bakr, H.N. Alshareef, O.F. Mohammed, Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation, ACS Ener.Lett., 3 (2018) 2301-2307.
    [91] F. Krieg, S.T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Süess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, Colloidal CsPbX3 (X= Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability, ACS ener. lett., 3 (2018) 641-646.
    [92] H. Huang, M.I. Bodnarchuk, S.V. Kershaw, M.V. Kovalenko, A.L. Rogach, Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance, ACS ener. lett., 2 (2017) 2071-2083.
    [93] P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li, Y. Zeng, Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance, Chem. Mater., 29 (2017) 5168-5173.
    [94] Y. Sun, J. Chen, F. Wang, Y. Yin, Y. Jin, J. Wang, X. Peng, R. Han, C. Zhang, J. Kong, Direct fabrication of CsPbxMn1− x (Br, Cl) 3 thin film by a facile solution spraying approach, Nanomaterials, 11 (2021) 3242.
    [95] Y. Zhou, Z. Zhou, M. Chen, Y. Zong, J. Huang, S. Pang, N.P. Padture, Doping and alloying for improved perovskite solar cells, J. Mate. Chem. A, 4 (2016) 17623-17635.
    [96] Y. Zhou, J. Chen, O.M. Bakr, H.-T. Sun, Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications, Chem. Mater., 30 (2018) 6589-6613.
    [97] A. De, S. Das, N. Mondal, A. Samanta, Highly luminescent violet-and blue-emitting stable perovskite nanocrystals, ACS Mater. Lett., 1 (2019) 116-122.
    [98] K. Xing, X. Yuan, Y. Wang, J. Li, Y. Wang, Y. Fan, L. Yuan, K. Li, Z. Wu, H. Li, Improved doping and emission efficiencies of Mn-doped CsPbCl3 perovskite nanocrystals via nickel chloride, J. Phys. Chem. Lett., 10 (2019) 4177-4184.
    [99] S. Li, Z. Shi, F. Zhang, L. Wang, Z. Ma, D. Yang, Z. Yao, D. Wu, T.-T. Xu, Y. Tian, Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices, Chem. Mater., 31 (2019) 3917-3928.
    [100] R. Begum, M.R. Parida, A.L. Abdelhady, B. Murali, N.M. Alyami, G.H. Ahmed, M.N. Hedhili, O.M. Bakr, O.F. Mohammed, Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping, J. Am. Chem.Soci., 139 (2017) 731-737.
    [101] X. Luo, X. Liu, L. Han, Lead-free perovskite solar cells, what's next?, Next Energy, 1 (2023) 100011.
    [102] F. Cao, L. Li, Progress of lead‐free halide perovskites: from material synthesis to photodetector application, Adv. Func.Mater., 31 (2021) 2008275.
    [103] M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: a review, Water, air, and soil pollution, 200 (2009) 59-77.
    [104] X. Li, G. Jiang, S. Zhou, X. Wei, Y. Chen, C.K. Duan, M. Yin, Luminescent properties of chromium (III)-doped lithium aluminate for temperature sensing, Senso. Actuat B: Chem., 202 (2014) 1065-1069.
    [105] S. Adachi, photoluminescence properties of Cr3+-activated oxide phosphors, ECS. J. Sol. St. Sci. Tech., 10 (2021) 026001.
    [106] F. Sun, R. Xie, L. Guan, C. Zhang, The near-infrared long-persistent phosphorescence of Cr3+-activated non-gallate phosphor, Mater. Lett., 164 (2016) 39-43.
    [107] Y. Zhang, R. Huang, Z. Lin, J. Song, X. Wang, Y. Guo, C. Song, Y. Yu, J. Robertson, Multiple magnification effects of Ce 3+ ions on near-infrared persistent luminescence of Cr-doped LaAlO 3, Opt. Mater. Express, 6 (2016) 922-928.
    [108] J. Ou, X. Yang, S. Xiao, Luminescence performance of Cr3+ doped and Cr3+, Mn4+ co-doped La2ZnTiO6 phosphors, Mater. Res.Bull., 124 (2020) 110764.
    [109] N. Vlasenko, P. Oleksenko, Z. Denisova, M. Mukhlyo, L. Veligura, Thermofield Cr→ Cr²⁺ recharging resulting in anomalous intensification of Cr²⁺ emission in ZnS: Cr thin-film electroluminescent structures, Semicond. Phys. Quantum Electron., (2007).
    [110] C. Bao, F. Gao, Physics of defects in metal halide perovskites, Repo.Progr. Phys., (2022).
    [111] Q. Wang, L. Gao, C. Yu, M. Wang, L. Gou, J. Zhang, Thiophene Derivatives as Ligands for Highly Luminescent and Stable Manganese-Doped CsPbCl3 Nanocrystals, Front. Chem., 10 (2022).
    [112] S. Ozen, T. Guner, G. Topcu, M. Ozcan, M.M. Demir, H. Sahin, Experimental and first-principles investigation of Cr-driven color change in cesium lead halide perovskites, J. Appl..hys., 125 (2019) 225705.
    [113] G.S. Tesfaye, Y.-T. Li, Y.-H. Wu, T.-S. Wu, S.-Y. Fu, C.-Y. Lee, B.-Y. Chen, G.-C. Yin, M.-T. Tang, Y.-C. Chiu, Probing the carrier recombination mechanism of Cr-doped CsPbCl3 via temperature-dependent PL and TR-PL, Opt. Mater., 122 (2021) 111692.
    [114] B.-H. Lin, Y.-H. Wu, X.-Y. Li, H.-C. Hsu, Y.-C. Chiu, C.-Y. Lee, B.-Y. Chen, G.-C. Yin, S.-C. Tseng, S.-H. Chang, Capabilities of time-resolved X-ray excited optical luminescence of the Taiwan Photon Source 23A X-ray nanoprobe beamline, J. Synchrotron Radiat., 27 (2020) 217-221.
    [115] B.-H. Lin, X.-Y. Li, D.-J. Lin, B.-L. Jian, H.-C. Hsu, H.-Y. Chen, S.-C. Tseng, C.-Y. Lee, B.-Y. Chen, G.-C. Yin, Investigation of Cavity Enhanced XEOL of a Single ZnO Microrod by Using Multifunctional Hard X-ray Nanoprobe, Sci. rep., 9 (2019) 207.
    [116] Y.-H. Wu, Y.-Y. Lin, J.-L. Chen, S.-Y. Fu, S.-C. Huang, C.-y. Lee, B.-Y. Chen, G.-C. Yin, E.-W. Huang, M.-T. Tang, Visualizing the valence states of europium ions in Eu-doped BaAl2O4 using X-ray nanoprobe mapping, J. Synchrotron Radiat., 29 (2022) 456-461.
    [117] W. Xiang, Z. Wang, D.J. Kubicki, X. Wang, W. Tress, J. Luo, J. Zhang, A. Hofstetter, L. Zhang, L. Emsley, Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells, Nat..commun., 10 (2019) 4686.
    [118] L. Wu, Y. Wang, M. Kurashvili, A. Dey, M. Cao, M. Döblinger, Q. Zhang, J. Feldmann, H. Huang, T. Debnath, Interfacial Manganese‐Doping in CsPbBr3 Nanoplatelets by Employing a Molecular Shuttle, Angewandte Chemie, 134 (2022) e202115852.
    [119] Y. He, C.C. Stoumpos, I. Hadar, Z. Luo, K.M. McCall, Z. Liu, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor, J. Am. Chem. Soci., 143 (2021) 2068-2077.
    [120] D. Yang, S. Chu, Y. Wang, C.K. Siu, S. Pan, S.F. Yu, Frequency upconverted amplified spontaneous emission and lasing from inorganic perovskite under simultaneous six-photon absorption, Opt. Lett., 43 (2018) 2066-2069.
    [121] S.B. Bhagyalakshmi, S. Ghimire, K. Takahashi, K.i. Yuyama, Y. Takano, T. Nakamura, V. Biju, Nonradiative Energy Transfer through Distributed Bands in Piezochemically Synthesized Cesium and Formamidinium Lead Halide Perovskites, Chem–A Europ. J., 26 (2020) 2133-2137.
    [122] L. Zhuang, X. Zhang, J. Zhang, Q. Jin, J. Jian, X. Zhang, Influence of PMMA thin film combined with Mn-doped cesium lead halide perovskite CsPbCl3, Opt. Mater., 115 (2021) 111050.
    [123] S. Chu, S. Pan, G. Li, Trap state passivation and photoactivation in wide band gap inorganic perovskite semiconductors, Phys. Chem. Chem. Phys., 20 (2018) 25476-25481.
    [124] Y.J. Zhang, Y.C. Wang, W. Yan, T. Li, S. Li, Y.R. Hu, Synthesis of Cr2O3/TNTs nanocomposite and its photocatalytic hydrogen generation under visible light irradiation, Appl. Surf. Sci., 255 (2009) 9508-9511.
    [125] H.M. Kamari, N.M. Al-Hada, A.A. Baqer, A.H. Shaari, E. Saion, Comprehensive study on morphological, structural and optical properties of Cr 2 O 3 nanoparticle and its antibacterial activities, J. Mater. Sci. Mater. Electron., 30 (2019) 8035-8046.
    [126] K. Strafford, P. Datta, G. Forster, High-temperature chloridation of binary Fe Cr alloys at 1000° C, Mater. Sci. Engine. A, 120 (1989) 61-68.
    [127] D. Peng, T. Hihara, K. Sumiyama, Electrical properties of oxide‐coated metal (Co, Cr, Ti) cluster assemblies, phys.stat.soli. (a), 196 (2003) 450-458.
    [128] T. Kohno, Y. Sudo, M. Yamauchi, K. Mitsui, H. Kudo, H. Okagawa, Y. Yamada, Internal quantum efficiency and nonradiative recombination rate in InGaN-based near-ultraviolet light-emitting diodes, Japan. J. Appl. Phys., 51 (2012) 072102.
    [129] Y. Liu, T. Wu, Y. Liu, T. Song, B. Sun, Suppression of non-radiative recombination toward high efficiency perovskite light-emitting diodes, APL Mater., 7 (2019).
    [130] F. Pan, J. Li, X. Ma, Y. Nie, B. Liu, H. Ye, Free and self-trapped exciton emission in perovskite CsPbBr3 microcrystals, RSC. adv., 12 (2022) 1035-1042.
    [131] Y. Narukawa, Y. Kawakami, S. Fujita, S. Nakamura, Dimensionality of excitons in laser-diode structures composed of In x Ga 1− x N multiple quantum wells, phys.Rev. B, 59 (1999) 10283.
    [132] K. Uchiyama, B. Cieslik, T. Ai, F. Niikura, S. Abe, Various ultra-high-speed imaging and applications by Streak camera.
    [133] H.-H. Fang, F. Wang, S. Adjokatse, N. Zhao, J. Even, M. Antonietta Loi, Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications, Light: Scie. Appl., 5 (2016) e16056-e16056.
    [134] M. Baranowski, R. Kudrawiec, M. Syperek, J. Misiewicz, T. Sarmiento, J.S. Harris, Time-resolved photoluminescence studies of annealed 1.3-μm GaInNAsSb quantum wells, Nanoscale Res. Lett., 9 (2014) 1-5.
    [135] C.-C. Hong, H. Ahn, C.-Y. Wu, S. Gwo, Strong green photoluminescence from InxGa 1-xN/GaN nanorod arrays, Opt. express., 17 (2009) 17227-17233.
    [136] R. Scott, S. Kickhöfel, O. Schoeps, A. Antanovich, A. Prudnikau, A. Chuvilin, U. Woggon, M. Artemyev, A.W. Achtstein, Temperature dependent radiative and non-radiative recombination dynamics in CdSe–CdTe and CdTe–CdSe type II hetero nanoplatelets, Phys.Chem. Chem., 18 (2016) 3197-3203.
    [137] M. Strassburg, M. Dworzak, H. Born, R. Heitz, A. Hoffmann, M. Bartels, K. Lischka, D. Schikora, J. Christen, Lateral redistribution of excitons in CdSe/ZnSe quantum dots, Appl. phys. lett., 80 (2002) 473-475.
    [138] C. Gourdon, P. Lavallard, Exciton transfer between localized states in CdS1–xSex alloys, phys. stat. soli.(b), 153 (1989) 641-652.
    [139] J. Li, L. Gan, Z. Fang, H. He, Z. Ye, Bright tail states in blue-emitting ultrasmall perovskite quantum dots, J. Phys. Chem. Lett., 8 (2017) 6002-6008.
    [140] G. Li, Y. Zhang, D. Geng, M. Shang, C. Peng, Z. Cheng, J. Lin, Single-composition trichromatic white-emitting Ca4Y6 (SiO4) 6O: Ce3+/Mn2+/Tb3+ phosphor: luminescence and energy transfer, ACS. Appl. Mater.Interf., 4 (2012) 296-305.
    [141] Q. Li, Y. Liu, P. Chen, J. Hou, Y. Sun, G. Zhao, N. Zhang, J. Zou, J. Xu, Y. Fang, Excitonic luminescence engineering in tervalent-europium-doped cesium lead halide perovskite nanocrystals and their temperature-dependent energy transfer emission properties, J. Phys. Chem. C, 122 (2018) 29044-29050.
    [142] R. An, H. Zhao, H.-M. Hu, X. Wang, M.-L. Yang, G. Xue, Synthesis, structure, white-light emission, and temperature recognition properties of Eu/Tb mixed coordination polymers, Inorg. Chem., 55 (2016) 871-876.
    [143] J. Xiong, G. Li, J. Zhang, D. Li, E.Y.B. Pun, H. Lin, Fluorescence regulation derived from Eu3+ in miscible-order fluoride-phosphate blocky phosphor, Nanotech., 32 (2021) 435705.
    [144] A. Shukla, G. Kaur, K.J. Babu, A. Kaur, D.K. Yadav, H.N. Ghosh, Defect-interceded cascading energy transfer and underlying charge transfer in europium-doped CsPbCl3 nanocrystals, J. Phys. Chem. Lett., 13 (2021) 83-90.
    [145] J. Wu, H. Bai, W. Qu, G. Cao, Y. Zhang, J. Yu, Preparation of Eu3+-doped CsPbBr3 quantum-dot microcrystals and their luminescence properties, Opt. Mater., 97 (2019) 109454.
    [146] Y. Wang, S. Bai, H. Liang, C. Li, T. Tan, G. Yang, J. Wang, Lanthanide ions doped rare earth-based double perovskite single crystals for light-emitting diodes, J.Alloy. Compoun., 934 (2023) 167952.
    [147] T. Salamakha, M. Buryi, E. Trusova, Y. Tratsiak, Synthesis and study of europium doped BaI2 in glass ceramic form, Boletín de la Sociedad Española de Cerámica y Vidrio, 60 (2021) 318-327.
    [148] J. Barzowska, N. Majewska, D. Jankowski, M. Grzegorczyk, S. Mahlik, D. Michalik, M. Sopicka-Lizer, P. Aleshkevych, Y. Zhydachevskyy, A. Suchocki, Mechanism of the Luminescence Enhancement of SrSi2N2O2: Eu2+ Phosphor via Manganese Addition, J. Phys. Chem. C, 126 (2022) 5292-5301.
    [149] C. Lu, Y. Duan, P. Li, Y. Lu, S. Xu, J. Zhang, Polychromatic tunable luminescence of Eu3+ doped CsPbBr3 quantum dot glass ceramic induced by mechanical crystallization, Ceram. Internat., 48 (2022) 13826-13832.
    [150] G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, Y. Jiang, Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3–Cs4PbBr6) films, J. Phys. Chem. Lett., 9 (2018) 1592-1599.
    [151] X. Li, W. Ma, D. Liang, W. Cai, S. Zhao, Z. Zang, High-performance CsPbBr3@ Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication, eScience, 2 (2022) 646-654.
    [152] X. Deng, R. Zhang, K. Zhou, Z. Gao, W. He, L. Zhang, C. Han, F. Kang, B. Li, A Comparative Investigation of Single Crystal and Polycrystalline Ni‐Rich NCMs as Cathodes for Lithium‐Ion Batteries, Ener. Environ.l Mater., (2022).
    [153] Y. Zhang, Y. Huang, C. Zhou, Y. Xu, J. Zhong, H. Mao, Crystalline structures and optoelectronic properties of orthorhombic CsPbBr3 polycrystalline films grown by the Co-evaporation method, Vacuum, 202 (2022) 111219.
    [154] X. Lin, L. Chen, C. He, Y. Wang, X. Li, W. Dang, K. He, Y. Huangfu, D. Wu, B. Zhao, Vapor Phase Growth of Centimeter‐Sized Band Gap Engineered Cesium Lead Halide Perovskite Single‐Crystal Thin Films with Color‐tunable Stimulated Emission, Adv. Funct. Mater., 33 (2023) 2210278.
    [155] Y.-T.L. Getu Sitotaw Tesfaye, Yu-Hao Wu, Tai-Sing Wu, Chien-Yu Lee, Bo-Yi Chen, Gung-Chian Yin, Mau-Tsu Tang, Yu-Cheng Chiu, Bi-Hsuan Lin., Probing free and bound excitons in Eu-doped CsPbBr3 by
    temperature-dependent photoluminescence and
    time-resolved photoluminescence, Opt. Mater., 138 (2023).
    [156] H.C. Woo, J.W. Choi, J. Shin, S.-H. Chin, M.H. Ann, C.-L. Lee, Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts, J. phys. chemi. lett., 9 (2018) 4066-4074.
    [157] X. Lao, Z. Yang, Z. Su, Z. Wang, H. Ye, M. Wang, X. Yao, S. Xu, Luminescence and thermal behaviors of free and trapped excitons in cesium lead halide perovskite nanosheets, Nanoscale, 10 (2018) 9949-9956.
    [158] V. Mykhaylyk, H. Kraus, V. Kapustianyk, H. Kim, P. Mercere, M. Rudko, P. Da Silva, O. Antonyak, M. Dendebera, Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures, Sci. Rep., 10 (2020) 8601.
    [159] S.T. Birkhold, E. Zimmermann, T. Kollek, D. Wurmbrand, S. Polarz, L. Schmidt‐Mende, Impact of Crystal Surface on Photoexcited States in Organic–Inorganic Perovskites, Adv. Funct. Mater., 27 (2017) 1604995.
    [160] J. Shi, H. Zhang, Y. Li, J.J. Jasieniak, Y. Li, H. Wu, Y. Luo, D. Li, Q. Meng, Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites, Ener. Environ. Sci., 11 (2018) 1460-1469.
    [161] A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C.C. Stoumpos, M.G. Kanatzidis, J. Even, Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells, ACS. nano, 12 (2018) 3477-3486.
    [162] J. Wang, A. Koizumi, Y. Fujiwara, W.M. Jadwisienczak, Optical and electrical study of defects in GaN in situ doped with Eu 3+ ion grown by OMVPE, J. Electro. Mater., 45 (2016) 6355-6362.
    [163] V. Naresh, K. Gupta, C.P. Reddy, B.S. Ham, Energy transfer and colour tunability in UV light induced Tm3+/Tb3+/Eu3+: ZnB glasses generating white light emission, Spectrochim. Acta. Part A: Molecul.Biomolecular Spectros., 175 (2017) 43-50.
    [164] E. Zych, J. Trojan-Piegza, Low-temperature luminescence of Lu2O3: Eu ceramics upon excitation with synchrotron radiation in the vicinity of band gap energy, Chem. mater., 18 (2006) 2194-2199.
    [165] W. Wang, J. Li, G. Duan, H. Zhou, Y. Lu, T. Yan, B. Cao, Z. Liu, Study on the Mn-doped CsPbCl3 perovskite nanocrystals with controllable dual-color emission via energy transfer, J. Alloy.,Compoun., 821 (2020) 153568.
    [166] M. Sebastian, J. Peters, C. Stoumpos, J. Im, S. Kostina, Z. Liu, M. Kanatzidis, A. Freeman, B. Wessels, Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbB r 3 and CsPbC l 3, Phys. Rev.B, 92 (2015) 235210.
    [167] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Exciton localization in solution-processed organolead trihalide perovskites, Nat. commun., 7 (2016) 10896.
    [168] S.B. Naghadeh, S. Sarang, A. Brewer, A.L. Allen, Y.-H. Chiu, Y.-J. Hsu, J.-Y. Wu, S. Ghosh, J.Z. Zhang, Size and temperature dependence of photoluminescence of hybrid perovskite nanocrystals, J. Chem. Phys., 151 (2019) 154705.
    [169] K.R. Son, B.R. Lee, M.H. Jang, H.C. Park, Y.H. Cho, T.G. Kim, Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns, Photon. Res., 6 (2018) 30-36.
    [170] Y. Narukawa, Y. Kawakami, S. Fujita, S. Nakamura, Dimensionality of excitons in laser-diode structures composed of In x Ga 1− x N multiple quantum wells, phys. rev.B, 59 (1999) 10283.
    [171] B. Omogo, J.F. Aldana, C.D. Heyes, Radiative and nonradiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands, J. Phys. Chem. C, 117 (2013) 2317-2327.
    [172] F. Alam, K.D. Wegner, S. Pouget, L. Amidani, K. Kvashnina, D. Aldakov, P. Reiss, Eu2+: A suitable substituent for Pb2+ in CsPbX3 perovskite nanocrystals?, J. Chem. Phys., 151 (2019) 231101.
    [173] L.A. Zavala-Sanchez, G.A. Hirata, E. Novitskaya, K. Karandikar, M. Herrera, O.A. Graeve, Distribution of Eu2+ and Eu3+ ions in hydroxyapatite: a cathodoluminescence and Raman study, ACS biomater. sci. eng., 1 (2015) 1306-1313.

    無法下載圖示
    全文公開日期 2028/07/18 (校外網路)
    全文公開日期 2028/07/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE