簡易檢索 / 詳目顯示

研究生: 阮丞安
Cheng-An Ruan
論文名稱: 高低互動擴增實境融入程式設計課程對國小學生學習之影響
The effect of different levels of AR-based Instruction on the elementary students' programming learning
指導教授: 高宜敏
Yi-Ming Kao
口試委員: 鄭海蓮
Hi-Lian, Jeng
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 擴增實境程式設計學習成就學習動機科技接受度認知負荷
外文關鍵詞: augment reality, programming learning, learning achievement, learning motivation, technology acceptance, cognitive load
相關次數: 點閱:435下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 程式設計在資訊教育中是重要的課程之一,然而程式抽象的概念與複雜的語法,對於初學者而言是相當困難的。為降低學生的學習困難,研究者開發一套擴增實境學習系統,將抽象的程式概念具體化。使用多個程式圖卡拼組,來觀察不同擴增實境的3D動畫結果,比較不同的拼組結果來學習程式的邏輯概念。為瞭解系統的可行性,本研究針對國小五年級學生,在資訊電腦課進行程式設計的教學,探討在不同的學習方式中,學生在程式設計的學習成就、學習動機、科技接受度與認知負荷會有什麼影響。經過三個星期的教學活動,研究結果表示,擴增實境學習有助於提升學生的程式設計學習成就,且能降低學生的認知負荷,並獲得學生高度的科技接受程度。另外,使用高互動擴增實境學習,配合拼組的方式學習,不僅能夠獲得較高的邏輯概念成績,更能有效提升的學習動機,並降低學習者的心智努力。這表示本研究所開發的擴增實境學習系統對於學生的學習是有正向的影響,若能配合這種拼組的學習方法,更能提升學生的學習表現。


    Programming learning is one of the most important courses in computer science education. However, the abstract and complex concept of programming language is troublesome for beginners. To reduce the students’ learning difficulty, the researcher developed a set of augment reality (AR)-based instruction to make the programming concept tangible. The AR-based instruction enables the students to learn the logic concept of programming by combining multiple programing flashcards to observe and compare its different 3D animated effects. This study aims to investigate the feasibility of the learning system. The experiment was implemented at an elementary school with fifth graders across a three-week computer information courses to explore the influence of programming system on the students’ learning achievements, learning motivation, technology acceptance, and also cognitive load. The study results revealed that the AR-based instruction helped the students enhance their learning achievements, reduce the cognitive load, as well as acquire high degree of technology acceptance. Moreover, using high interactive AR-based instruction with the combination of puzzle cards made the learners gain higher scores in the programming tests of logic concept, increase their learning motivations, and also reduce the mental efforts. Therefore, this study concluded that the AR-based instruction had a positive impact on programming learning and the additional assembled learning approach can further promote the students’ leaning performance.

    摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的與問題 5 1.3論文架構 6 1.4研究範圍與限制 7 第二章 文獻探討 8 2.1程式設計 8 2.2擴增實境 13 2.3學習動機 22 2.4認知負荷 23 第三章 研究方法 26 3.1研究架構 26 3.2前導性實驗 28 3.3研究設計 36 3.4研究對象 48 3.5研究工具 50 3.6實驗流程 53 3.7分析方法 56 第四章 實驗結果與分析 58 4.1程式設計成就測驗 58 4.2學習動機量表 62 4.3科技接受度量表 64 4.4認知負荷量表 66 4.5訪談結果 68 4-6討論 71 第五章 結論與建議 75 5.1結論 75 5.2建議 76 參考文獻 78 附件一(學習成就前測題目) 85 附件二(學習成就後測題目) 87 附件三(學習動機量表) 91 附件四(科技接受度量表) 92 附件五(認知負荷量表) 93 附件六(訪談問卷) 94 附件七(學習單) 95

    Akcaoglu, M. (2014). Learning problem-solving through making games at the game design and learning summer program. Educational Technology Research and Development, 62(5), 583-600.
    Artino, A. R., & Stephens, J. M. (2009). Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. The Internet and Higher Education, 12(3), 146-151.
    Azuma, R. T. (1997). A survey of augmented reality. Presence, 6(4), 355-385.
    Bressler, D. M., & Bodzin, A. M. (2013). A mixed methods assessment of students' flow experiences during a mobile augmented reality science game. Journal of Computer Assisted Learning, 29(6), 505-517.
    Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544.
    Carnevale, A. P., Smith, N., & Melton, M. (2011). STEM: Science Technology Engineering Mathematics. Georgetown University Center on Education and the Workforce.
    Chang, C. K. (2014). Effects of Using Alice and Scratch in an Introductory Programming Course for Corrective Instruction. Journal of Educational Computing Research, 51(2), 185-204.
    Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185-197.
    Chen, C. M., & Tsai, Y. N. (2012). Interactive augmented reality system for enhancing library instruction in elementary schools. Computers & Education, 59(2), 638-652.
    Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
    Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). Students' online interactive patterns in augmented reality-based inquiry activities. Computers & Education, 78, 97-108.
    Chu, H. C., Hwang, G. J., & Liang, Y. R. (2014). A cooperative computerized concept-mapping approach to improving students’ learning performance in web-based information-seeking activities. Journal of Computers in Education, 1(1), 19-33.
    Corral, J. M. R., Balcells, A. C., Estévez, A. M., Moreno, G. J., & Ramos, M. J. F. (2014). A game-based approach to the teaching of object-oriented programming languages. Computers & Education, 73, 83-92.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
    Erbas, A. K., Ince, M., & Kaya, S. (2015). Learning Mathematics with Interactive Whiteboards and Computer-Based Graphing Utility. Journal of Educational Technology & Society, 18(2), 299-312.
    Ericsson, K. A. (2002). Attaining excellence through deliberate practice: Insights from the study of expert performance. Teaching and learning: The essential readings, 4-37.
    Furió, D., González-Gancedo, S., Juan, M. C., Seguí, I., & Costa, M. (2013). The effects of the size and weight of a mobile device on an educational game. Computers & Education, 64, 24-41.
    Hadjerrouit, S. (2008). Towards a blended learning model for teaching and learning computer programming: A case study. Informatics in Education-An International Journal, 7(2), 181-210.
    Haugstvedt, A. C., & Krogstie, J. (2012). Mobile augmented reality for cultural heritage: A technology acceptance study. Proceedings of IEEE International Symposium on Mixed and Augmented Reality, pp. 247-255. doi: 10.1109/ISMAR.2012.6402563
    Ho, C. M., Nelson, M. E., & Müeller-Wittig, W. (2011). Design and implementation of a student-generated virtual museum in a language curriculum to enhance collaborative multimodal meaning-making. Computers & Education, 57(1), 1083-1097.
    Hsu, C. K., & Hwang, G. J. (2014). A context-aware ubiquitous learning approach for providing instant learning support in personal computer assembly activities. Interactive Learning Environments, 22(6), 687-703.
    Hung, C. M., Huang, I., & Hwang, G. J. (2014). Effects of digital game-based learning on students’ self-efficacy, motivation, anxiety, and achievements in learning mathematics. Journal of Computers in Education, 1(2-3), 151-166.
    Hwang, G. J., Wu, P. H., Zhuang, Y. Y., & Huang, Y. M. (2013a). Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students. Interactive Learning Environments, 21(4), 338-354.
    Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013b). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education, 69, 121-130.
    Hwang, W. Y., Lin, L. K., Ochirbat, A., Shih, T. K., & Kumara, W. G. C. W. (2015). Ubiquitous Geometry Measuring Authentic Surroundings to Support Geometry Learning of the Sixth-Grade Students. Journal of Educational Computing Research, 52(1), 26-49.
    Ibáñez, M. B., Di Serio, Á., Villarán, D., & Delgado Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
    Juan, C., Toffetti, G., Abad, F., & Cano, J. (2010). Tangible cubes used as the user interface in an augmented reality game for edutainment. Proceedings of IEEE International Conference on Advanced Learning Technologies (ICALT), pp. 599-603. doi: 10.1109/ICALT.2010.170
    Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545-556.
    Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83-137.
    Kesim, M., & Ozarslan, Y. (2012). Augmented reality in education: current technologies and the potential for education. Procedia-Social and Behavioral Sciences, 47, 297-302.
    Kourouthanassis, P. E., Boletsis, C., & Lekakos, G. (2013). Demystifying the design of mobile augmented reality applications. Multimedia Tools and Applications, 74(3), 1045-1066.
    Küçük, S., Yılmaz, R. M., & Göktaş, Y. (2014). Augmented Reality for Learning English: Achievement, Attitude and Cognitive Load Levels of Students. EGITIM VE BILIM-Education and Science, 39(176), 393-404.
    Lin, H. F., & Chen, C. H. (2015). Design and application of augmented reality query-answering system in mobile phone information navigation. Expert Systems with Applications, 42(2), 810-820.
    Lin, T. J., Duh, H. B. L., Li, N., Wang, H. Y., & Tsai, C. C. (2013). An investigation of learners' collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Computers & Education, 68, 314-321.
    Liu, C. C., Lin, C. C., Chang, C. Y., & Chao, P. Y. (2014). Knowledge Sharing among University Students Facilitated with a Creative Commons Licensing Mechanism: A Case Study in a Programming Course. Educational Technology & Society, 17 (3), 154–167.
    Liu, P. H. E., & Tsai, M. K. (2013). Using augmented‐reality‐based mobile learning material in EFL English composition: An exploratory case study. British Journal of Educational Technology, 44(1), E1-E4.
    MacLaurin, M. B. (2011). The design of Kodu: a tiny visual programming language for children on the Xbox 360. Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL), pp. 241-246. doi: 10.1145/1926385.1926413
    Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. Proceedings of the 38th SIGCSE technical symposium on Computer science education, pp. 223-227. doi: 10.1145/1227310.1227388
    Mannila, L. (2007). Novices' Progress in Introductory Programming Courses. Informatics in Education, 6(1), 139-152.
    Martin-Gutierrez, J., & Meneses Fernández, M. D. (2014). Applying Augmented Reality in Engineering Education to Improve Academic Performance & Student Motivation. International Journal of Engineering Education, 30(3), 1-11.
    Mayer, R. E. (2009). Multimedia learning. Cambridge university press.
    Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
    McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B. D., et al. (2001). A multi-national, multi-institutional study of assessment of programming skills of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-180.
    Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented Reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies, 2351, 282-292.
    Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429-434.
    Pathomaree, N., & Charoenseang, S. (2005). Augmented reality for skill transfer in assembly task. Proceedings of the IEEE International Workshop on Robots and Human Interactive Communication, pp. 500-504. doi: 10.1109/ROMAN.2005.1513829
    Perez-Sanagustín, M., Hernandez-Leo, D., Santos, P., Kloos, C. D., & Blat, J. (2014). Augmenting reality and formality of informal and non-formal settings to enhance blended learning. Proceedings of the IEEE Transactions on Learning Technologies, pp. 118-131. doi: 10.1109/TLT.2014.2312719
    Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533-1543.
    Rodenbaugh, D. W., Lujan, H. L., & DiCarlo, S. E. (2012). Learning by doing: construction and manipulation of a skeletal muscle model during lecture. Advances in physiology education, 36(4), 302-306.
    Sanders, M. (2009). STEM, STEM Education, STEMmania. The Technology Teacher.
    Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2014). Augmented reality learning experiences: Survey of prototype design and evaluation. Proceedings of the IEEE Transactions on Learning Technologies, pp. 38-56. doi: 10.1109/TLT.2013.37
    Di Serio, A., Ibáñez, M. B., Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586-596.
    Sommerauer, P., & Müller, O. (2014). Augmented reality in informal learning environments: A field experiment in a mathematics exhibition. Computers & Education, 79, 59-68.
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
    Tang, A., Owen, C., Biocca, F., & Mou, W. (2003). Comparative effectiveness of augmented reality in object assembly. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 73-80. doi: 10.1145/642611.642626
    Tsai, M. K., Liu, P. H. E., & Yau, N. J. (2013). Using electronic maps and augmented reality‐based training materials as escape guidelines for nuclear accidents: An explorative case study in Taiwan. British Journal of Educational Technology, 44(1), E18-E21.
    Wang, C. H., & Chi, P. H. (2012). Applying augmented reality in teaching fundamental earth science in junior high schools. Proceedings of the Computer Applications for Database, Education, and Ubiquitous Computingpp, pp. 23-30. doi: 10.1007/978-3-642-35603-2
    Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570-585.
    Yan, L. (2009). Teaching object-oriented programming with games. Proceedings of the Sixth International Conference on Information Technology: New Generations, pp. 969–974. doi: 10.1109/ITNG.2009.13
    Yang, C. C., Hwang, G. J., Hung, C. M., & Tseng, S. S. (2013). An evaluation of the learning effectiveness of concept map-based science book reading via mobile devices. Journal of Educational Technology & Society, 16(3), 167-178.
    Yang, M. T., & Liao, W. C. (2014). Computer-Assisted Culture Learning in an Online Augmented Reality Environment Based on Free-Hand Gesture Interaction. IEEE Transactions on Learning Technologies, pp. 107-117. doi: 10.1109/TLT.2014.2307297
    Zhang, J., Sung, Y. T., Hou, H. T., & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & Education, 73, 178-188.

    QR CODE