簡易檢索 / 詳目顯示

研究生: Yohannes Mulugeta Hailu
Yohannes Mulugeta Hailu
論文名稱: Theoretical Study on the Regeneration Mechanism of Organic Dyes in Dye-sensitized Solar Cells
Theoretical Study on the Regeneration Mechanism of Organic Dyes in Dye-sensitized Solar Cells
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: Liang-Yih Chen
Liang-Yih Chen
Sheng-Hsien Lin
Sheng-Hsien Lin
Chao-Ping Hsu
Chao-Ping Hsu
Jer-Lai Kuo
Jer-Lai Kuo
Minh Tho NGUYEN
Minh Tho NGUYEN
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 226
中文關鍵詞: Dye-sensitized Solar CellsDye RegenerationOrganic DyeTriiodide/iodide Redox CoupleIodide-free Redox CoupleDFT/TD-DFT/VASP
外文關鍵詞: Dye-sensitized Solar Cells, Dye Regeneration, Organic Dye, Triiodide/iodide Redox Couple, Iodide-free Redox Couple, DFT/TD-DFT/VASP
相關次數: 點閱:229下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隨著能源需求的增加,如何利用太陽能轉化為電力受到人們廣泛的重視和討論,其中染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)因相對成本較低、製程簡便及低汙染等優點,使得染料敏化太陽能電池近年來發展極其迅速,但其光電轉化效率尚不足,因此仍有許多發展和提升的空間。
    本研究以染料再生為主軸,利用Gaussian09中的密度泛函理論(DFT)進行染料敏化劑和氧化還原體吸附在半導體表面的吸附模擬。第一部分研究重點為碘分子/三碘離子與染料敏化劑之間的氧化還原反應,基於一系列D-D-π-A的新型有機染料,我們系統性的分析光電轉化率策略,並提出染料和碘化物中間體二次電子注入的再生機制。此外,本研究也將染料本身的光電性質延伸至染料與半導體間的電子性質問題,利用第一原理Vienna Ab-initio Simulation Package (VASP)將染料吸附於二氧化鈦表面上,進行結構、吸附、表面和染料敏化劑間的交互作用和電荷分析。計算結果顯示,改變氧化還原對可使染料敏化劑和氧化還原中間體容易吸附在二氧化鈦表面上,且明顯提升開環電壓(Voc),顯著改善DSSCs光電轉化效率,其結果與實驗研究符合。因此近一步探討電解質/染料敏化劑/二氧化鈦表面結構間的交互作用,可以了解染料吸附模式如何改變電子傳遞及開路電壓等,進而影響DSSCs整體效率。
    透過本研究,吾人更加了解染料敏化劑和碘化物中間體間的交互作用和染料再生機制,透過染料敏化劑和碘化物中間體吸附模式的計算,期望未來能找到替代氧化還原對,進一步提升DSSCs的光電轉化效率。


    ABSTRACT
    Converting solar energy into electricity for energy generation has been showed to be a promising way to a sustainable energy improvement. In this context, dye-sensitized solar cells (DSSCs) did, and still does, attract much interest owing to their properties such as cost-effective, easy fabrication, eco-friendly…in the conversion of solar radiation into utilizable energy. However, they currently have a lower photoconversion efficiency; much effort need to be invested in the improvement of their efficiency.
    The general objective of this doctoral thesis is to contribute the understanding of the dyes regeneration mechanism for the improvement of DSSCs performance. For that, different quantum chemical methods were employed to study, model and designing of dye sensitizers and the redox mediators without/with the presence of a semiconductor surface. The first part of the thesis focuses on the study of an isolated dye with iodide/triiodide redox electrolytes with the aim to understand the regeneration mechanism of an organic dye. A new regeneration mechanism for organic dye was proposed for the first time by assuming the probability of second electron injection from the stable dye-iodide intermediate complex. Further, a series of new organic sensitizers based on a D–D–π–A architecture have been designed to obtain an easier electron transfer and to have remarkable light harvesting properties in the visible region. Results derived from the DFT calculations highlight the possibility of two-electron injection into the semiconductor surface during the dye regeneration mechanism.
    The thesis further investigated the electrolytes/dye interaction with a TiO2 surface to understand the structural, adsorption, and electronic properties using the first-principles calculations performed with Vienna Ab-initio Simulation Package (VASP). In particular, the interaction of iodide/iodide-free electrolytes with dyes on the surface significantly improves the structural, adsorption energetics, and electronic properties as compared to the free dye on the TiO2 surface. Our results pointed out that particularly the iodide-free redox electrolyte play an important role and it is thus a suitable architecture of the electrolytes/dye/TiO2 provides a significant improvement in the DSSCs performance. More importantly, the molecularly engineered model organic dye on the surface in conjunction with an alternate redox mediators compared to iodide redox mediators tends to enhance the efficiency of the DSSCs by increasing the open circuit voltage (Voc), in agreement with experimental studies. Overall, the work presented in the thesis will provides us with some insights into the understanding of the electrolyte/dye/TiO2 interaction; from their electronic structure to elementary process. This strategy is crucial for a rational design of dyes and alternate redox couples for DSSCs applications. We belief that the computational results give new directions for further experimental studies for improvement of DSSCs applications.

    Abstract i Acknowledgments iii Table of Contents v List of Figures ix List of Schemes xv Chapter 1. Motivation, Aims and Outline of the Thesis 1 1.1. Background 1 1.2. Aim and Outline of the Thesis 4 Chapter 2. Overview of Dye-Sensitized Solar Cells 6 2.1. Basic Working Principle of Dye-sensitized Solar Cells 8 2.2. Components of the DSSCs 10 2.2.1. Semiconductor Material for DSSCs 11 2.2.2. Transparent conducting substrate in DSSCs 12 2.2.3. Sensitizer in DSSCs 12 2.2.4. Counter electrode in DSSCs 13 2.2.5. Electrolytes for DSSCs 14 2.3. Overview of Redox Electrolytes in DSSCs 14 2.3.1. Characteristics of Redox Electrolytes 14 2.3.2. Iodide/Tri-iodide Redox Electrolytes 16 2.3.3. Alternative Redox Electrolytes 17 2.4. Key Efficiency Parameters of DSSCs 22 2.4.1. Electron Injection in DSSCs 22 2.4.2. Regeneration of Dyes in DSSCs 23 2.4.3. Power Conversion Efficiency 26 2.5. Recent Development of Organic Sensitizers 30 Chapter 3. Theoretical Methodology 34 3.1. Introduction 34 3.2. Time-Independent Schrödinger equation 35 3.3. The Born–Oppenheimer Approximation 36 3.4. Fundamental of Density-Functional Theory 37 3.4.1. Hohenberg-Kohn Theorems 37 3.4.2. Kohn-Sham Equation 38 3.4.3. Exchange-Correlation Functional 39 3.5. Time-Dependent Density Functional Theory 43 3.6. Basis set 43 3.7. Geometry Optimization and Potential Energy Surface 46 3.8. Solvent Effects 46 Chapter 4. New Insights into Organic Dye Regeneration Mechanism in Dye-Sensitized Solar Cells: A Theoretical Study 48 4.1. Introduction 48 4.2. Computational Details 49 4.3. Results and discussion 51 4.3.1. Proposed Regeneration Mechanism 51 4.3.2. Interaction of Dye with iodide/iodine complexes 52 4.3.3. Dye regeneration energetics 62 4.3.4. UV-Vis Absorption spectra 65 4.4. Summary 72 Chapter 5. Effects of Terminal Donor Unit in Dyes with a D–D–Π–A Architecture on the Regeneration Mechanism in DSSCs: A Computational Study 74 5.1. Introduction 74 5.2. Computational Details 75 5.3. Results and Discussion 77 5.3.1. Structural and Optoelectronic Properties of Isolated Dyes 77 5.3.2. Influence of Donor Units on the Dye Regeneration Mechanism 89 5.3.2. Regeneration Energetics 94 5.3.3. UV-VIS Absorption Spectra of the Dye-Iodide Complexes 98 5.4. Summary 106 Chapter 6. Theoretical Study on the Interaction of Iodide Electrolyte with Dye on Anatase TiO2 Surface in Dye-Sensitized Solar Cells 107 6.1. Introduction 107 6.3. Results and Discussion 110 6.3.1. Interaction between Dye/Iodide Complex and TiO2 111 6.3.2. Electronic Structure of the Adsorbed Complexes 119 6.4. Summary 126 Chapter 7. Theoretical Investigation on the Interaction of Electrolytes/Dye/TiO2 Architecture in Dye-Sensitized Solar Cells: The Roles of Redox Mediators 128 7.1. Introduction 128 7.2. Computational Details 129 7.3. Results and Discussion 131 7.3.1. Characterization of the Alternate Redox Electrolytes 132 7.3.2. Interaction between the Redox Electrolytes/Dye and TiO2 136 7.3.2. Dye Regeneration Mechanism 143 7.3.3. Electronic Structure of the Redox Electrolytes/dye and TO2 146 7.4. Summary 156 Chapter 8. Conclusions and Outlook 157 References 163 Appendices 173

    REFERENCES

    [1] N. Armaroli, V. Balzani, Angewandte Chemie, 46 (2007) 52-66.
    [2] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chemical reviews, 115 (2015) 2136-2173.
    [3] S. Zhang, X. Yang, Y. Numata, L. Han, Energy & Environmental Science, 6 (2013) 1443.
    [4] Y. Bai, I. Mora-Sero, F. De Angelis, J. Bisquert, P. Wang, Chemical reviews, 114 (2014) 10095-10130.
    [5] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Nature News, 454 (2008) 816-823.
    [6] N.S. Lewis, science, 315 (2007) 798-801.
    [7] H. Lund, Energy, 32 (2007) 912-919.
    [8] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Progress in Photovoltaics: Research and Applications, 23 (2015) 1-9.
    [9] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Chemical communications, 51 (2015) 15894-15897.
    [10] J. Du, Z. Du, J.S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.J. Wan, Journal of the American Chemical Society, 138 (2016) 4201-4209.
    [11] A. Kolay, R.K. Kokal, A. Kalluri, I. Macwan, P.K. Patra, P. Ghosal, M. Deepa, ACS applied materials & interfaces, 9 (2017) 34915-34926.
    [12] K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong, Journal of the American Chemical Society, 137 (2015) 5602-5609.
    [13] W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science, 356 (2017) 1376-1379.
    [14] M.G. B O'regan, nature, 353 (1991) 737-740.
    [15] B.E. Hardin, H.J. Snaith, M.D. McGehee, Nature Photonics, 6 (2012) 162.
    [16] M. Grätzel, Acc. Chem. Res., 42 (2009) 1788–1798.
    [17] H. Kusama, H. Sugihara, K. Sayama, The Journal of Physical Chemistry C, 115 (2011) 9267-9275.
    [18] Y.M. Hailu, W.-R. Shie, S. Nachimuthu, J.-C. Jiang, ACS Sustain. Chem. Eng., 5 (2017) 8619-8629.
    [19] N. Martsinovich, A. Troisi, Energ Environ Sci, 4 (2011) 4473-4495.
    [20] A.Y. Anderson, P.R.F. Barnes, J.R. Durrant, B.C. O’Regan, The Journal of Physical Chemistry C, 115 (2011) 2439-2447.
    [21] J. Nyhlen, G. Boschloo, A. Hagfeldt, L. Kloo, T. Privalov, Chemphyschem : a European journal of chemical physics and physical chemistry, 11 (2010) 1858-1862.
    [22] S. Sharma, S. Bulkesh, S.K. Ghoshal, D. Mohan, Renewable and Sustainable Energy Reviews, 70 (2017) 529-537.
    [23] M.K. Nazeeruddin, Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N. and Grätzel, M., Journal of the American Chemical Society, 115 (1993) 6382-6390.
    [24] Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.H. Zhu, Journal of the American Chemical Society, 137 (2015) 14055-14058.
    [25] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, science, 334 (2011) 629-634.
    [26] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. Nazeeruddin, M. Grätzel, Nature Chemistry, 6 (2014) nchem.1861.
    [27] L. Martín-Gomis, F. Fernández-Lázaro, Á. Sastre-Santos, J. Mater. Chem. A, 2 (2014) 15672-15682.
    [28] S. Ardo, G.J. Meyer, Chemical Society reviews, 38 (2009) 115-164.
    [29] A. Hagfeldt, Boschloo, G., Sun, L., Kloo, L. and Pettersson, H., Chemical reviews, 110 ( 2010) 6595–6663.
    [30] T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswyk, J.T. Hupp, Energy & Environmental Science, 1 (2008) 66.
    [31] M.J. Bierman, S. Jin, Energy & Environmental Science, 2 (2009) 1050.
    [32] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nature Materials, 4 (2005) 455.
    [33] S. Chappel, S.-G. Chen, A. Zaban, Langmuir, 18 (2002) 3336-3342.
    [34] E. Ramasamy, J. Lee, The Journal of Physical Chemistry C, 114 (2010) 22032-22037.
    [35] S. Mori, A. Asano, The Journal of Physical Chemistry C, 114 (2010) 13113-13117.
    [36] J.H. Kim, Y.-H. Shin, T.-Y. Seong, S.-I. Na, H.-K. Kim, Journal of Physics D: Applied Physics, 45 (2012) 395104.
    [37] Q. Jiang, J. Gao, L. Yi, G. Hu, J. Zhang, Applied Physics A, 122 (2016) 442.
    [38] K. Sayama, H. Sugihara, H. Arakawa, Chemistry of Materials, 10 (1998) 3825-3832.
    [39] F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Grätzel, D. Gal, S. Rühle, D. Cahen, The Journal of Physical Chemistry B, 105 (2001) 6347-6352.
    [40] Y.L. Lee, Y.S. Lo, Advanced Functional Materials, 19 (2009) 604-609.
    [41] X. Chen, S.S. Mao, Chemical reviews, 107 (2007) 2891-2959.
    [42] A. Hagfeldt, M. Graetzel, Chemical reviews, 95 (1995) 49-68.
    [43] M. Grätzel, Nature, 414 (2001) 338-344.
    [44] S.C. Pillai, P. Periyat, R. George, D.E. McCormack, M.K. Seery, H. Hayden, J. Colreavy, D. Corr, S.J. Hinder, The Journal of Physical Chemistry C, 111 (2007) 1605-1611.
    [45] J. Gong, J. Liang, K. Sumathy, Renewable and Sustainable Energy Reviews, 16 (2012) 5848-5860.
    [46] S. Suhaimi, M.M. Shahimin, Z. Alahmed, J. Chyský, A. Reshak, Int. J. Electrochem. Sci, 10 (2015) 2859-2871.
    [47] S. Yun, P.D. Lund, A. Hinsch, Energy & Environmental Science, 8 (2015) 3495-3514.
    [48] J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, ACS Nano, 4 (2010) 6203-6211.
    [49] B. Anothumakkool, I. Agrawal, S.N. Bhange, R. Soni, O. Game, S.B. Ogale, S. Kurungot, ACS applied materials & interfaces, 8 (2016) 553-562.
    [50] Y.-A. Leu, M.-H. Yeh, L.-Y. Lin, T.-J. Li, L.-Y. Chang, S.-Y. Shen, Y.-S. Li, G.-L. Chen, W.-H. Chiang, J.-J. Lin, K.-C. Ho, ACS Sustainable Chemistry & Engineering, 5 (2016) 537-546.
    [51] Z.-Y. Li, M. Shaheer Akhtar, J. Hee Kuk, B.-S. Kong, O.B. Yang, Materials Letters, 86 (2012) 96-99.
    [52] Z.-S. Wang, K. Sayama, H. Sugihara, The Journal of Physical Chemistry B, 109 (2005) 22449-22455.
    [53] B.V. Bergeron, A. Marton, G. Oskam, G.J. Meyer, The Journal of Physical Chemistry B, 109 (2005) 937-943.
    [54] T. Daeneke, T.-H. Kwon, A.B. Holmes, N.W. Duffy, U. Bach, L. Spiccia, Nature Chemistry, 3 (2011) 211.
    [55] A. Colombo, G. Di Carlo, C. Dragonetti, M. Magni, A. Orbelli Biroli, M. Pizzotti, D. Roberto, F. Tessore, E. Benazzi, C.A. Bignozzi, L. Casarin, S. Caramori, Inorganic chemistry, 56 (2017) 14189-14197.
    [56] S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, Journal of the American Chemical Society, 127 (2005) 9648-9654.
    [57] Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.E. Moser, M. Freitag, A. Hagfeldt, M. Grätzel, Nature Communications, 8 (2017) ncomms15390.
    [58] M. Wang, N. Chamberland, L. Breau, J.-E. Moser, R. Humphry-Baker, B. Marsan, S.M. Zakeeruddin, M. Grätzel, Nature Chemistry, 2 (2010) 385.
    [59] M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Materials Today, 18 (2015) 155-162.
    [60] T.W. Hamann, J.W. Ondersma, Energy Environ. Sci., 4 (2011) 370-381.
    [61] A.B. Martinson, T.W. Hamann, M.J. Pellin, J.T. Hupp, Chemistry, 14 (2008) 4458-4467.
    [62] G. Boschloo, A. Hagfeldt, Acc. Chem. Res., 42 (2009) 1819-1826.
    [63] Y. Saygili, M. Soderberg, N. Pellet, F. Giordano, Y. Cao, A.B. Munoz-Garcia, S.M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, L. Kavan, J.E. Moser, M. Gratzel, A. Hagfeldt, M. Freitag, Journal of the American Chemical Society, 138 (2016) 15087-15096.
    [64] Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang, P. Wang, Chemical communications, 47 (2011) 4376-4378.
    [65] J. Xia, N. Masaki, M. Lira-Cantu, Y. Kim, K. Jiang, S. Yanagida, Journal of the American Chemical Society, 130 (2008) 1258-1263.
    [66] J. Cong, X. Yang, L. Kloo, L. Sun, Energy & Environmental Science, 5 (2012) 9180.
    [67] M. Wang, C. Grätzel, S.M. Zakeeruddin, M. Grätzel, Energy & Environmental Science, 5 (2012) 9394.
    [68] Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, Journal of the American Chemical Society, 133 (2011) 11442-11445.
    [69] V.V. Pavlishchuk, A.W. Addison, Inorganica Chimica Acta, 298 (2000) 97-102.
    [70] K.N. Brown, P.T. Gulyas, P.A. Lay, N.S. McAlpine, A.F. Masters, L. Phillips, Journal of the Chemical Society, Dalton Transactions, (1993) 835-840.
    [71] I. Noviandri, K.N. Brown, D.S. Fleming, P.T. Gulyas, P.A. Lay, A.F. Masters, L. Phillips, The Journal of Physical Chemistry B, 103 (1999) 6713-6722.
    [72] G. Zotti, G. Schiavon, S. Zecchin, D. Favretto, Journal of Electroanalytical Chemistry, 456 (1998) 217-221.
    [73] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.M. Zakeeruddin, J.-E. Moser, M. Grätzel, Nature Photonics, (2017).
    [74] E.C. Constable, A. Hernandez Redondo, C.E. Housecroft, M. Neuburger, S. Schaffner, Dalton transactions, (2009) 6634-6644.
    [75] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, Journal of the American Chemical Society, 132 (2010) 16714-16724.
    [76] J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, C. Yi, M.K. Nazeeruddin, M. Grätzel, Nature Communications, 3 (2012) 631.
    [77] Z. Zhang, P. Chen, T.N. Murakami, S.M. Zakeeruddin, M. Grätzel, Advanced Functional Materials, 18 (2008) 341-346.
    [78] F. Kato, N. Hayashi, T. Murakami, C. Okumura, K. Oyaizu, H. Nishide, Chemistry letters, 39 (2010) 464-465.
    [79] R. Katoh, Ambio, 41 Suppl 2 (2012) 143-148.
    [80] J. Kallioinen, G. Benkö, V. Sundström, J.E.I. Korppi-Tommola, A.P. Yartsev, The Journal of Physical Chemistry B, 106 (2002) 4396-4404.
    [81] A. Listorti, B. O’Regan, J.R. Durrant, Chemistry of Materials, 23 (2011) 3381-3399.
    [82] M. Juozapavicius, M. Kaucikas, S.D. Dimitrov, P.R.F. Barnes, J.J. van Thor, B.C. O’Regan, The Journal of Physical Chemistry C, 117 (2013) 25317-25324.
    [83] E.P. John N. Clifford, Md. K. Nazeeruddin,M. Gratzel, James R. Durrant, J. Phys. Chem. C 111 (2007) 6561–6567.
    [84] S.M. Feldt, G. Wang, G. Boschloo, A. Hagfeldt, The Journal of Physical Chemistry C, 115 (2011) 21500-21507.
    [85] J.N. Clifford, E. Palomares, M.K. Nazeeruddin, M. Grätzel, J.R. Durrant, The Journal of Physical Chemistry C, 111 (2007) 6561-6567.
    [86] A.Y. Anderson, P.R.F. Barnes, J.R. Durrant, B.C. O’Regan, The Journal of Physical Chemistry C, 114 (2010) 1953-1958.
    [87] F. Schiffmann, J. Vandevondele, J. Hutter, A. Urakawa, R. Wirz, A. Baiker, Proceedings of the National Academy of Sciences of the United States of America, 107 (2010) 4830-4833.
    [88] T. Privalov, G. Boschloo, A. Hagfeldt, P.H. Svensson, L. Kloo, The Journal of Physical Chemistry C, 113 (2009) 783-790.
    [89] X. Li, X. Zhang, J. Hua, H. Tian, Molecular Systems Design & Engineering, 2 (2017) 98-122.
    [90] Y. Li, B. Xu, P. Song, F. Ma, M. Sun, The Journal of Physical Chemistry C, 121 (2017) 12546-12561.
    [91] J. Feng, Y. Jiao, W. Ma, M.K. Nazeeruddin, M. Grätzel, S. Meng, The Journal of Physical Chemistry C, 117 (2013) 3772-3778.
    [92] X. Yang, M. Yanagida, L. Han, Energy & Environmental Science, 6 (2013) 54-66.
    [93] Z. Ning, Y. Fu, H. Tian, Energy & Environmental Science, 3 (2010) 1170.
    [94] X.-F. Wang, H. Tamiaki, L. Wang, N. Tamai, O. Kitao, H. Zhou, S.-i. Sasaki, Langmuir, 26 (2010) 6320-6327.
    [95] J.R. Jennings, Y. Liu, Q. Wang, The Journal of Physical Chemistry C, 115 (2011) 15109-15120.
    [96] H.-C. Zhu, J. Zhang, Y.-L. Wang, Applied Surface Science, 433 (2018) 1137-1147.
    [97] Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, J.T. Lin, Journal of Materials Chemistry, 22 (2012) 8734.
    [98] M.E. Ragoussi, T. Torres, Chemical communications, 51 (2015) 3957-3972.
    [99] N. Sharifi, F. Tajabadi, N. Taghavinia, Chemphyschem : a European journal of chemical physics and physical chemistry, 15 (2014) 3902-3927.
    [100] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, Journal of the American Chemical Society, 126 (2004) 12218-12219.
    [101] Z. Ning, H. Tian, Chemical communications, (2009) 5483-5495.
    [102] Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, K. Hara, Chemistry of Materials, 20 (2008) 3993-4003.
    [103] M. Xie, J. Chen, F.Q. Bai, W. Wei, H.X. Zhang, The Journal of Physical Chemistry A, 118 (2014) 2244-2252.
    [104] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chemistry of Materials, 22 (2010) 1915-1925.
    [105] S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian, L. Han, Chemical communications, 48 (2012) 6972-6974.
    [106] C.-P. Lee, R.Y.-Y. Lin, L.-Y. Lin, C.-T. Li, T.-C. Chu, S.-S. Sun, J.T. Lin, K.-C. Ho, RSC Advances, 5 (2015) 23810-23825.
    [107] Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu, H. Tian, The Journal of Organic Chemistry, 73 (2008) 3791-3797.
    [108] M. Liang, J. Chen, Chemical Society reviews, 42 (2013) 3453-3488.
    [109] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chemical reviews, 110 (2010) 6595-6663.
    [110] P. Chen, J.H. Yum, F.D. Angelis, E. Mosconi, S. Fantacci, S.-J. Moon, R.H. Baker, J. Ko, M.K. Nazeeruddin, M. Grätzel, Nano letters, 9 (2009) 2487-2492.
    [111] Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.-E. Moser, M. Freitag, Nature Communications, 8 (2017), 15390.
    [112] Y. Saygili, M. Söderberg, N. Pellet, F. Giordano, Y. Cao, A.B. Muñoz-García, S.M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, Journal of the American Chemical Society, 138 (2016) 15087-15096.
    [113] H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, L. Sun, The Journal of Physical Chemistry C, 112 (2008) 11023-11033.
    [114] F. Zhang, W. Ma, Y. Jiao, J. Wang, X. Shan, H. Li, X. Lu, S. Meng, ACS Appl. Mater. Interfaces, 6 (2014) 22359-22369.
    [115] H.-H.G. Tsai, J.-C. Hu, C.-J. Tan, Y.-C. Sheng, C.-C. Chiu, The Journal of Physical Chemistry A, 120 (2016) 8813-8822.
    [116] W.-C. Chen, S. Nachimuthu, J.-C. Jiang, Scientific reports, 7 (2017) 4979.
    [117] K. Hara, T. Sato, R. Katoh, A. Furube, T. Yoshihara, M. Murai, M. Kurashige, S. Ito, A. Shinpo, S. Suga, Advanced Functional Materials, 15 (2005) 246-252.
    [118] C. Anselmi, E. Mosconi, M. Pastore, E. Ronca, F. De Angelis, Physical Chemistry Chemical Physics, 14 (2012) 15963-15974.
    [119] K. Srinivas, K. Yesudas, K. Bhanuprakash, V.J. Rao, L. Giribabu, The Journal of Physical Chemistry C, 113 (2009) 20117-20126.
    [120] O.N. Ventura, M. Kieninger, in: Pure and Applied Chemistry, 1998, pp. 2301.
    [121] P.A.M. Dirac, The principles of quantum mechanics, Oxford university press, 1981.
    [122] K. Ramachandran, G. Deepa, K. Namboori, Computational chemistry and molecular modeling: principles and applications, Springer Science & Business Media, 2008.
    [123] M. Born, R. Oppenheimer, Annalen der Physik, 389 (1927) 457-484.
    [124] M.O. Born, J. R., Ann. Physik 84 (1927) 457.
    [125] E.V. Ludena, L. Echevarria, X. Lopez, J.M. Ugalde, The Journal of chemical physics, 136 (2012) 084103.
    [126] A. Groß, in, Springer (Berlin, 2002), 2007.
    [127] I. Rahinov, R. Cooper, D. Matsiev, C. Bartels, D.J. Auerbach, A.M. Wodtke, Physical chemistry chemical physics : PCCP, 13 (2011) 12680-12692.
    [128] A.M. Wodtke *, J.C. Tully, D.J. Auerbach, International Reviews in Physical Chemistry, 23 (2004) 513-539.
    [129] R.M. Dreizler, E.K. Gross, in, Berlin, 1990.
    [130] K. Schwarz, Phase Transitions, 52 (1994) 109-122.
    [131] D.S. Sholl, J.A. Steckel, DFT Calculations for Surfaces of Solids, in: Density Functional Theory, John Wiley & Sons, Inc., 2009, pp. 83-112.
    [132] C.A. Ullrich, Time-dependent density-functional theory: concepts and applications, OUP Oxford, 2011.
    [133] X.Y. Pan, V. Sahni, J Chem Phys, 143 (2015) 174105.
    [134] W. Kohn, L.J. Sham, Physical Review, 140 (1965) A1133-A1138.
    [135] P. Geerlings, F. De Proft, W. Langenaeker, Chemical reviews, 103 (2003) 1793-1874.
    [136] B. Civalleri, K. Doll, C.M. Zicovich-Wilson, The Journal of Physical Chemistry B, 111 (2007) 26-33.
    [137] P. Raybaud, G. Kresse, J. Hafner, H. Toulhoat, Journal of Physics: Condensed Matter, 9 (1997) 11085.
    [138] J.P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters, 78 (1997) 1396-1396.
    [139] C. Lee, W. Yang, R.G. Parr, Physical Review B, 37 (1988) 785-789.
    [140] K.B. ohn P. Perdew, Matthias Ernzerhof, Physical Review Letters, 77 (1996) 3865-3868.
    [141] J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys Rev Lett, 91 (2003) 146401.
    [142] A.D. Becke, The Journal of chemical physics, 109 (1998) 2092-2098.
    [143] D. Chatfield, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 108 (2002) 367-368.
    [144] A.D. Becke, The Journal of chemical physics, 98 (1993) 1372-1377.
    [145] J.P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters, 77 (1996) 3865-3868.
    [146] M.E. Casida, Journal of Molecular Structure: THEOCHEM, 914 (2009) 3-18.
    [147] C. Adamo, D. Jacquemin, Chemical Society reviews, 42 (2013) 845-856.
    [148] R.S. Mulliken, Physical Review, 32 (1928) 186.
    [149] J.C. Slater, Physical Review, 36 (1930) 57-64.
    [150] H. Taketa, S. Huzinaga, K. O-ohata, Journal of the Physical Society of Japan, 21 (1966) 2313-2324.
    [151] R. Ditchfield, W.J. Hehre, J.A. Pople, The Journal of chemical physics, 54 (1971) 724-728.
    [152] L.R. Kahn, P. Baybutt, D.G. Truhlar, The Journal of chemical physics, 65 (1976) 3826-3853.
    [153] J.B. Foresman, Inc., Pittsburgh, PA, 15106 (1996).
    [154] M.d.F.M. Raymakers, in, North-West University, 2012.
    [155] C.J.C. Aleksandr V. Marenich, and Donald G. Truhlar, J. Phys. Chem. B, 113 (2009) 6378–6396.
    [156] M. Cossi, V. Barone, The Journal of chemical physics, 109 (1998) 6246-6254.
    [157] S. Nachimuthu, W.C. Chen, E.G. Leggesse, J.C. Jiang, Phys Chem Chem Phys, 18 (2016) 1071-1081.
    [158] C.Y. Tseng, F. Taufany, S. Nachimuthu, J.C. Jiang, D.J. Liaw, Org Electron, 15 (2014) 1205-1214.
    [159] J.N. Clifford, E. Palomares, M.K. Nazeeruddin, M. Gratzel, J.R. Durrant, J Phys Chem C, 111 (2007) 6561-6567.
    [160] S.F. Zhang, X.D. Yang, Y.H. Numata, L.Y. Han, Energ Environ Sci, 6 (2013) 1443-1464.
    [161] A.Y. Anderson, P.R.F. Barnes, J.R. Durrant, B.C. O'Regan, J Phys Chem C, 115 (2011) 2439-2447.
    [162] H. Kusama, H. Sugihara, K. Sayama, J Phys Chem C, 115 (2011) 9267-9275.
    [163] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat Chem, 6 (2014) 242-247.
    [164] A.Y. Anderson, P.R.F. Barnes, J.R. Durrant, B.C. O'Regan, J Phys Chem C, 114 (2010) 1953-1958.
    [165] M. Xie, J. Chen, F.Q. Bai, W. Wei, H.X. Zhang, J Phys Chem A, 118 (2014) 2244-2252.
    [166] J. Jeon, W.A. Goddard, H. Kim, J Am Chem Soc, 135 (2013) 2431-2434.
    [167] F. Schiffmann, J. VandeVondele, J. Hutter, A. Urakawa, R. Wirz, A. Baiker, P Natl Acad Sci USA, 107 (2010) 4830-4833.
    [168] H. Kusama, H. Sugihara, K. Sayama, J Phys Chem C, 115 (2011) 2544-2552.
    [169] C. Zhu, J.X. Liang, J Power Sources, 283 (2015) 343-350.
    [170] S. Martiniani, A.Y. Anderson, C. Law, B.C. O'Regan, C. Barolo, Chem Commun, 48 (2012) 2406-2408.
    [171] Q.P. Chai, W.Q. Li, S.Q. Zhu, Q. Zhang, W.H. Zhu, Acs Sustain Chem Eng, 2 (2014) 239-247.
    [172] S.P. Singh, M.S. Roy, K.R.J. Thomas, S. Balaiah, K. Bhanuprakash, G.D. Sharma, J Phys Chem C, 116 (2012) 5941-5950.
    [173] H.Y. Li, M.M. Fang, Y.Q. Hou, R.L. Tang, Y.Z. Yang, C. Zhong, Q.Q. Li, Z. Li, Acs Appl Mater Inter, 8 (2016) 12134-12140.
    [174] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, in, Gaussian, Inc., Wallingford, CT, USA, 2009.
    [175] J.D. Chai, M. Head-Gordon, Phys Chem Chem Phys, 10 (2008) 6615-6620.
    [176] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys., 72 (1980) 650-654.
    [177] W.R. Wadt, P.J. Hay, J. Chem. Phys., 82 (1985) 284-298.
    [178] J.P. Foster, F. Weinhold, J Am Chem Soc, 102 (1980) 7211-7218.
    [179] D.P. Hagberg, T. Marinado, K.M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, L. Sun, J Org Chem, 72 (2007) 9550-9556.
    [180] T. Khanasa, N. Jantasing, S. Morada, N. Leesakul, R. Tarsang, S. Namuangruk, T. Kaewin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, Eur J Org Chem, (2013) 2608-2620.
    [181] V. Barone, M. Cossi, J Phys Chem A, 102 (1998) 1995-2001.
    [182] M. Cossi, N. Rega, G. Scalmani, V. Barone, J Comput Chem, 24 (2003) 669-681.
    [183] T. Privalov, G. Boschloo, A. Hagfeldt, P.H. Svensson, L. Kloo, J Phys Chem C, 113 (2009) 783-790.
    [184] J.L. Gazquez, F. Mendez, Journal of Physical Chemistry 98 (1994) 4591-4593.
    [185] T.N. Murakami, N. Koumura, M. Kimura, S. Mori, Langmuir, 30 (2014) 2274-2279.
    [186] J. Ogawa, S. Agrawal, N. Koumura, S. Mori, J Phys Chem C, 120 (2016) 3612-3618.
    [187] T. Liu, A. Troisi, Chem Phys Lett, 570 (2013) 159-162.
    [188] S.S. Batsanov, Inorg Mater+, 37 (2001) 871-885.
    [189] A.M. Asaduzzaman, G. Schreckenbach, Phys Chem Chem Phys, 13 (2011) 15148-15157.
    [190] T. Kenichi, S. Kyoko, F. Hiroshi, O. Mitsuko, Nature, 423 (2003) 971-974.
    [191] F. Zhang, P. Yu, Y. Xu, W. Shen, M. Li, R. He, Dyes and Pigments, 124 (2016) 156-164.
    [192] S.O. Odoh, G. Schreckenbach, J Phys Chem A, 114 (2009) 1957-1963.
    [193] C.-H. Hu, A.M. Asaduzzaman, G. Schreckenbach, J Phys Chem C, 114 (2010) 15165-15173.
    [194] Y.G. Lazarou, A.V. Prosmitis, V.C. Papadimitriou, P. Papagiannakopoulos, J Phys Chem A, 105 (2001) 6729-6742.
    [195] T. Leininger, A. Nicklass, H. Stoll, M. Dolg, P. Schwerdtfeger, J. Chem. Phys., 105 (1996) 1052-1059.
    [196] G. Schreckenbach, Chemistry-A European Journal, 23 (2017) 3797-3803.
    [197] Z.Q. Yang, C.M. Liu, C.J. Shao, C.D. Lin, Y. Liu, J Phys Chem C, 119 (2015) 21852-21859.
    [198] M. Gratzel, Accounts Chem Res, 42 (2009) 1788-1798.
    [199] M. Liang, W. Xu, F.S. Cai, P.Q. Chen, B. Peng, J. Chen, Z.M. Li, J Phys Chem C, 111 (2007) 4465-4472.
    [200] C.A. Echeverry, R. Cotta, E. Castro, A. Ortiz, L. Echegoyen, B. Insuasty, Rsc Adv, 5 (2015) 60823-60830.
    [201] Z. He, Z. Hou, Y. Xing, X. Liu, X. Yin, M. Que, J. Shao, W. Que, P.J. Stang, Sci Rep-Uk, 6 (2016) 29476.
    [202] J. Preat, D. Jacquemin, C. Michaux, E.A. Perpete, Chem Phys, 376 (2010) 56-68.
    [203] C.-Y. Tseng, F. Taufany, S. Nachimuthu, J.-C. Jiang, D.-J. Liaw, Organic Electronics, 15 (2014) 1205-1214.
    [204] S. Nachimuthu, W.-C. Chen, E.G. Leggesse, J.-C. Jiang, Physical Chemistry Chemical Physics, 18 (2016) 1071-1081.
    [205] S. Nachimuthu, K.-H. Lai, F. Taufany, J.-C. Jiang, Phys. Chem. Chem. Phys., 16 (2014) 15389-15399.
    [206] Y. Li, Y. Li, P. Song, F. Ma, J. Liang, M. Sun, RSC Advances, 7 (2017) 20520-20536.
    [207] W.-I. Hung, Y.-Y. Liao, T.-H. Lee, Y.-C. Ting, J.-S. Ni, W.-S. Kao, J.T. Lin, T.-C. Wei, Y.-S. Yen, Chem. Commun., 51 (2015) 2152-2155.
    [208] J. Tang, J. Hua, W. Wu, J. Li, Z. Jin, Y. Long, H. Tian, Energy Environ. Sci., 3 (2010) 1736-1745.
    [209] M.-D. Zhang, H.-X. Xie, X.-H. Ju, L. Qin, Q.-X. Yang, H.-G. Zheng, X.-F. Zhou, Phys. Chem. Chem. Phys., 15 (2013) 634-641.
    [210] J.-H. Park, D.G. Nam, B.-M. Kim, M.Y. Jin, D.-H. Roh, H.S. Jung, D.H. Ryu, T.-H. Kwon, ACS Energy Lett., 2 (2017) 1810-1817.
    [211] M. Li, L. Kou, L. Diao, Q. Zhang, Z. Li, Q. Wu, W. Lu, D. Pan, Z. Wei, J. Phys. Chem. C, 119 (2015) 9782-9790.
    [212] G. Zhang, Y. Bai, R. Li, D. Shi, S. Wenger, S.M. Zakeeruddin, M. Grätzel, P. Wang, Energy Environ. Sci., 2 (2009) 92-95.
    [213] D. Joly, L. Pelleja, S. Narbey, F. Oswald, T. Meyer, Y. Kervella, P. Maldivi, J. Clifford, E. Palomares, R. Demadrille, Energy Environ. Sci., 8 (2015) 2010-2018.
    [214] M. Xie, J. Chen, F.-Q. Bai, W. Wei, H.-X. Zhang, J. Phys. Chem. A, 118 (2014) 2244-2252.
    [215] M.K. Nazeeruddin, P. Péchy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, J. Am. Chem. Soc., 123 (2001) 1613-1624.
    [216] A.Y. Anderson, P.R. Barnes, J.R. Durrant, B.C. O’Regan, J. Phys. Chem. C, 115 (2011) 2439-2447.
    [217] W. Kohn, L.J. Sham, Phys. Rev., 140 (1965) A1133.
    [218] J.-D. Chai, M. Head-Gordon, Physical Chemistry Chemical Physics, 10 (2008) 6615-6620.
    [219] P.J. Hay, W.R. Wadt, J. Chem. Phys, 82 (1985) 270-283.
    [220] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys, 72 (1980) 650-654.
    [221] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 24 (2003) 669-681.
    [222] J. Foster, F. Weinhold, J. Am. Chem. Soc., 102 (1980) 7211-7218.
    [223] C. Cárdenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo, P. Fuentealba, J. Phys. Chem. A, 113 (2009) 8660-8667.
    [224] F. Mendez, J.L. Gazquez, J. Am. Chem. Soc., 116 (1994) 9298-9301.
    [225] A. Irfan, R. Cui, J. Zhang, L. Hao, Chem. Phys., 364 (2009) 39-45.
    [226] J.-S. Ni, Y.-C. Yen, J.T. Lin, J. Mater. Chem. A, 4 (2016) 6553-6560.
    [227] C.-G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A, 107 (2003) 4184-4195.
    [228] D. Joly, L. Pelleja, S. Narbey, F. Oswald, T. Meyer, Y. Kervella, P. Maldivi, J.N. Clifford, E. Palomares, R. Demadrille, Energy & Environmental Science, 8 (2015) 2010-2018.
    [229] L.L. Estrella, M.P. Balanay, D.H. Kim, J. Phys. Chem. A, 120 (2016) 5917-5927.
    [230] Q. Chai, W. Li, S. Zhu, Q. Zhang, W. Zhu, ACS Sustainable Chem. Eng., 2 (2014) 239-247.
    [231] D.P. Hagberg, T. Marinado, K.M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, L. Sun, J. Org. Chem., 72 (2007) 9550-9556.
    [232] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, ChemComm, 51 (2015) 15894-15897.
    [233] N. Santhanamoorthi, K.-H. Lai, F. Taufany, J.-C. Jiang, J. Power Sources, 242 (2013) 464-471.
    [234] N. Santhanamoorthi, C.-M. Lo, J.-C. Jiang, J. Phys. Chem. Lett., 4 (2013) 524-530.
    [235] R. Ma, P. Guo, H. Cui, X. Zhang, M.K. Nazeeruddin, M. Grätzel, J. Phys. Chem. A, 113 (2009) 10119-10124.
    [236] J. Feng, Y. Jiao, W. Ma, M.K. Nazeeruddin, M. Grätzel, S. Meng, J. Phys. Chem. C, 117 (2013) 3772-3778.
    [237] J.C. Delgado, Y. Ishikawa, R.G. Selsby, Photochem. Photobiol., 85 (2009) 1286-1298.
    [238] G.R. Hutchison, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc., 127 (2005) 2339-2350.
    [239] V.T.T. Huong, T.B. Tai, M.T. Nguyen, J. Phys. Chem. A, 118 (2014) 3335-3343.
    [240] P.F. Barbara, T.J. Meyer, M.A. Ratner, J. Phys. Chem., 100 (1996) 13148-13168.
    [241] C.-Y. Lin, C.-F. Lo, L. Luo, H.-P. Lu, C.-S. Hung, E.W.-G. Diau, J. Phys. Chem. C, 113 (2009) 755-764.
    [242] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115 (1993) 6382-6390.
    [243] L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, M. Grätzel, Advanced Materials, 17 (2005) 813-815.
    [244] K.C.D. Robson, K. Hu, G.J. Meyer, C.P. Berlinguette, Journal of the American Chemical Society, 135 (2013) 1961-1971.
    [245] M. Pastore, S. Fantacci, F. De Angelis, J. Phys. Chem. C, 117 (2013) 3685-3700.
    [246] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B, 108 (2004) 4818-4822.
    [247] R. Katoh, A. Furube, K. Hara, S. Murata, H. Sugihara, H. Arakawa, M. Tachiya, J. Phys. Chem. B, 106 (2002) 12957-12964.
    [248] Y. Ooyama, Y. Harima, Eur. J. Org. Chem., 2009 (2009) 2903-2934.
    [249] L.-N. Yang, S.-L. Chen, Z.-S. Li, J. Mater. Chem. A, 3 (2015) 8308-8315.
    [250] T. Daeneke, A.J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach, L. Spiccia, J. Am. Chem. Soc., 134 (2012) 16925-16928.
    [251] C. Sun, Y. Li, P. Song, F. Ma, Materials, 9 (2016) 813.
    [252] Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, Journal of the American Chemical Society, 133 (2011) 11442-11445.
    [253] S. Wenger, P.-A. Bouit, Q. Chen, J. Teuscher, D.D. Censo, R. Humphry-Baker, J.-E. Moser, J.L. Delgado, N. Martín, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc., 132 (2010) 5164-5169.
    [254] A. Pradhan, T. Morimoto, M. Saikiran, G. Kapil, S. Hayase, S.S. Pandey, J. Mater. Chem. A, 5 (2017) 22672-22682.
    [255] J. Nyhlen, G. Boschloo, A. Hagfeldt, L. Kloo, T. Privalov, ChemPhysChem, 11 (2010) 1858-1862.
    [256] F. Schiffmann, J. VandeVondele, J. Hutter, A. Urakawa, R. Wirz, A. Baiker, Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 4830-4833.
    [257] S. Namuangruk, R. Fukuda, M. Ehara, J. Meeprasert, T. Khanasa, S. Morada, T. Kaewin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, J. Phys. Chem. C, 116 (2012) 25653-25663.
    [258] S.P. Singh, M.S. Roy, K.R.J. Thomas, S. Balaiah, K. Bhanuprakash, G.D. Sharma, J. Phys. Chem. C, 116 (2012) 5941-5950.
    [259] R. Boaretto, S. Carli, S. Caramori, C.A. Bignozzi, D. Saccone, C. Magistris, C. Barolo, G. Viscardi, Dalton.Trans., (2017).
    [260] C. Yasuo, I. Ashraful, W. Yuki, K. Ryoichi, K. Naoki, H. Liyuan, Japanese Journal of Applied Physics, 45 (2006) L638.
    [261] Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.-H. Zhu, Journal of the American Chemical Society, 137 (2015) 14055-14058.
    [262] B.E. Hardin, H.J. Snaith, M.D. McGehee, Nature Photonics, 6 (2012) 162-169.
    [263] G. Kresse, J. Furthmüller, Physical review B, 54 (1996) 11169.
    [264] J.P. Perdew, K. Burke, M. Ernzerhof, Physical review letters, 77 (1996) 3865.
    [265] J. Banfield, Journal of Materials Chemistry, 8 (1998) 2073-2076.
    [266] H. Zhang, J.F. Banfield, Chemistry of Materials, 17 (2005) 3421-3425.
    [267] S. Yang, L. Gao, Journal of the American Ceramic Society, 88 (2005) 968-970.
    [268] Y. Sakatani, D. Grosso, L. Nicole, C. Boissière, G.J. de AA Soler-Illia, C. Sanchez, Journal of Materials Chemistry, 16 (2006) 77-82.
    [269] M. Kapilashrami, Y. Zhang, Y.-S. Liu, A. Hagfeldt, J. Guo, Chemical reviews, 114 (2014) 9662-9707.
    [270] D.C. Sorescu, W.A. Al-Saidi, K.D. Jordan, J. Chem. Phys., 135 (2011) 124701.
    [271] J. Klimeš, D.R. Bowler, A. Michaelides, Physical Review B, 83 (2011) 195131.
    [272] R. Bader, in, Oxford, 1990.
    [273] C.-G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A, 107 (2003) 4184-4195.
    [274] M. Pastore, E. Mosconi, F. De Angelis, J. Phys. Chem. C, 116 (2012) 5965-5973.
    [275] E. Mosconi, J.-H. Yum, F. Kessler, C.J. Gómez García, C. Zuccaccia, A. Cinti, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, Journal of the American Chemical Society, 134 (2012) 19438-19453.
    [276] J.-i. Nishida, T. Masuko, Y. Cui, K. Hara, H. Shibuya, M. Ihara, T. Hosoyama, R. Goto, S. Mori, Y. Yamashita, J. Phys. Chem. C, 114 (2010) 17920-17925.
    [277] U. Aschauer, A. Selloni, Physical Chemistry Chemical Physics, 14 (2012) 16595-16602.
    [278] J. Zheng, K. Zhang, Y. Fang, Y. Zuo, Y. Duan, Z. Zhuo, X. Chen, W. Yang, Y. Lin, M.S. Wong, F. Pan, ACS Appl. Mater. Interfaces, 7 (2015) 25341-25351.
    [279] J.K. Roy, S. Kar, J. Leszczynski, Scientific reports, 8 (2018) 10997.
    [280] G.A. Shamov, G. Schreckenbach, T.N. Vo, Chemistry-A European Journal, 13 (2007) 4932-4947.
    [281] Q. Liu, Q.-S. Li, G.-Q. Lu, J.-H. Luo, L.-N. Yang, S.-L. Chen, Z.-S. Li, Theor. Chem. Acc., 133 (2014) 1437.
    [282] J.P. Perdew, M. Levy, Physical Review Letters, 51 (1983) 1884-1887.
    [283] A. Mishra, M.K. Fischer, P. Bäuerle, Angewandte Chemie International Edition, 48 (2009) 2474-2499.
    [284] M.-W. Lee, J.-Y. Kim, H.J. Son, J.Y. Kim, B. Kim, H. Kim, D.-K. Lee, K. Kim, D.-H. Lee, M.J. Ko, Scientific Reports, 5 (2015) 7711.
    [285] G. Boschloo, L. Häggman, A. Hagfeldt, J. Phys. Chem. B, 110 (2006) 13144-13150.
    [286] A.M. Asaduzzaman, G. Schreckenbach, Physical Chemistry Chemical Physics, 12 (2010) 14609-14618.
    [287] H. Kusama, H. Orita, H. Sugihara, Langmuir, 24 (2008) 4411-4419.
    [288] A. Usami, S. Seki, Y. Mita, H. Kobayashi, H. Miyashiro, N. Terada, Sol. Energy Mater Sol. Cells, 93 (2009) 840-842.
    [289] M. Liang, J. Chen, Chem. Soc. Rev., 42 (2013) 3453-3488.
    [290] J. Preat, D. Jacquemin, E.A. Perpete, Energy & Environmental Science, 3 (2010) 891-904.
    [291] S. Rühle, M. Greenshtein, S.-G. Chen, A. Merson, H. Pizem, C.S. Sukenik, D. Cahen, A. Zaban, J. Phys. Chem. B, 109 (2005) 18907-18913.
    [292] J. Krüger, U. Bach, M. Grätzel, Advanced Materials, 12 (2000) 447-451.
    [293] N. Karjule, M.F. Mele Kavungathodi, J. Nithyanandhan, J. Phys. Chem. C, 121 (2017) 21836-21847.
    [294] E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli, F. De Angelis, Energy & Environmental Science, 6 (2013) 183-193.
    [295] R. Jono, M. Sumita, Y. Tateyama, K. Yamashita, The journal of physical chemistry letters, 3 (2012) 3581-3584.
    [296] A.B. Martinson, T.W. Hamann, M.J. Pellin, J.T. Hupp, Chemistry-A European Journal, 14 (2008) 4458-4467.
    [297] Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang, P. Wang, Chemical Communications, 47 (2011) 4376-4378.
    [298] T. Daeneke, T.-H. Kwon, A.B. Holmes, N.W. Duffy, U. Bach, L. Spiccia, Nature chemistry, 3 (2011) 211.
    [299] Z. Zhang, P. Chen, T.N. Murakami, S.M. Zakeeruddin, M. Grätzel, Advanced Functional Materials, 18 (2008) 341-346.
    [300] G. Kresse, J. Furthmüller, Physical Review B, 54 (1996) 11169-11186.
    [301] G. Kresse, J. Furthmüller, Computational materials science, 6 (1996) 15-50.
    [302] K. Jiří, R.B. David, M. Angelos, Journal of Physics: Condensed Matter, 22 (2010) 022201.
    [303] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, in, Gaussian, Inc., Wallingford CT, 2009.
    [304] A.V. Marenich, C.J. Cramer, D.G. Truhlar, The Journal of Physical Chemistry B, 113 (2009) 6378-6396.
    [305] J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, C. Yi, Nature communications, 3 (2012) 631.
    [306] V.V. Pavlishchuk, A.W. Addison, Inorganica Chimica Acta, 298 (2000) 97-102.
    [307] J. Datta, A. Bhattacharya, K.K. Kundu, Bulletin of the Chemical Society of Japan, 61 (1988) 1735-1742.
    [308] L. Friedman, A. Irsa, G. Wilkinson, Journal of the American Chemical Society, 77 (1955) 3689-3692.
    [309] H. Maeda, R. Sakamoto, H. Nishihara, J. Phys. Chem. Lett., 6 (2015) 3821-3826.
    [310] W. Yang, M. Söderberg, A.I. Eriksson, G. Boschloo, RSC Advances, 5 (2015) 26706-26709.
    [311] G. Grampp, K. Rasmussen, Physical Chemistry Chemical Physics, 4 (2002) 5546-5549.
    [312] D. Klapstein, U. Pischel, W.M. Nau, Journal of the American Chemical Society, 124 (2002) 11349-11357.
    [313] A. Vittadini, A. Selloni, F. Rotzinger, M. Grätzel, The Journal of Physical Chemistry B, 104 (2000) 1300-1306.
    [314] C. O’Rourke, D.R. Bowler, The Journal of Physical Chemistry C, 114 (2010) 20240-20248.
    [315] Y. Wen, H. Yang, D. Zheng, K. Sun, L. Wang, J. Zhang, J. Phys. Chem. C, 121 (2017) 14019-14026.
    [316] A. Bondi, The Journal of Physical Chemistry, 68 (1964) 441-451.
    [317] C.A. Hunter, J.K. Sanders, Journal of the American Chemical Society, 112 (1990) 5525-5534.
    [318] H. Ellis, I. Schmidt, A. Hagfeldt, G. Wittstock, G. Boschloo, The Journal of Physical Chemistry C, 119 (2015) 21775-21783.
    [319] M. Grätzel, Acc. Chem. Res., 42 (2009) 1788-1798.
    [320] D. Cahen, G. Hodes, M. Grätzel, J.F. Guillemoles, I. Riess, The Journal of Physical Chemistry B, 104 (2000) 2053-2059.
    [321] M.J. DeVries, M.J. Pellin, J.T. Hupp, Langmuir, 26 (2010) 9082-9087.
    [322] C. Cardenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo, P. Fuentealba, J Phys Chem A, 113 (2009) 8660-8667.
    [323] J. Olah, C. Van Alsenoy, A.B. Sannigrahi, J Phys Chem A, 106 (2002) 3885-3890.
    [324] R.G. Parr, W. Yang, J Am Chem Soc, 106 (1984) 4049-4050.
    [325] F. Mendez, J.L. Gazquez, J Am Chem Soc, 116 (1994) 9298-9301.
    [326] W. Yang, W.J. Mortier, J Am Chem Soc, 108 (1986) 5708-5711.
    [327] C. Morell, A. Grand, A. Toro-Labbe, J Phys Chem A, 109 (2005) 205-212.
    [328] L.E. Roy, E. Jakubikova, M.G. Guthrie, E.R. Batista, J. Phys. Chem. A, 113 (2009) 6745-6750.

    QR CODE