簡易檢索 / 詳目顯示

研究生: TAME
Tamasgen Fikadu Yadeta
論文名稱: 碳點對染料敏化與鈣鈦礦太陽能電池光電性能的影響
The Effect of C-dots on Dye-sensitized Solar Cells and Perovskite Solar Cells
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
氏原真樹
Masaki Ujihara
郭東昊
Dong-Hau Kuo
張鑑祥
Chien-Hsiang Chang
刁 維光
Eric Wei-Guang Diau
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 72
外文關鍵詞: dye-sensitized solar cell, n-TiO2/p-NiO heterojunction Carbon dot, n-TiO2/p-CuO heterojunction, Power conversion efficiency, the Incident photon conversion efficiency, perovskite solar cell; mesoporous-TiO2, carbon dot, electron transport layer; power conversion efficiency
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可再生能源技術被認為是乾淨能源,有效利用這些資源可以最大限度地減少對環境的影響,並根據當前和未來的經濟和社會需求實現永續發展。利用可再生能源創造大量清潔、可持續電力的潛力已引起全世界的關注,並受到近期技術進步的推動。可再生能源有多種類型,如熱能、生物能、水能、潮汐能、風能、波浪能和地熱能。通過替代傳統能源,這是減少溫室氣體排放和全球暖化的好方法。在可再生能源中,光電技術尤其具有吸引力,因為它能將太陽光直接轉化為高品質的電能。因此,染料敏化太陽能電池(DSSC)和過氧化物太陽能電池(PSC)的開發使人們能夠從太陽/人造光中收集無限的能量,從而實現高效、經濟的太陽能轉換。
    染料敏化太陽能電池利用染料分子吸收陽光並產生電子-電洞對,然後通過多孔半導體傳輸產生電能。本論文介紹了基於 n-p 型半導體器件、二氧化鈦、氧化鎳 和 氧化銅奈米複合材料的染料敏化太陽能電池。另一方面,包晶體太陽能電池使用包晶體材料作為光吸收器和電子傳輸器。近年來,這兩種技術都取得了令人矚目的進展,PSC 的功率轉換效率超過了 25%,DSSC 的功率轉換效率超過了 14%。此外,本研究還評估了添加碳點對 DSSC 和 PSC 光陽極的影響。在奈米複合材料的基礎上改進光收集系統和電荷分離,以提高 DSSC 的功率轉換效率,增強 PSC 中電子的注入和電洞的阻擋,是一個不斷發展的研究領域。氧化鎳和氧化銅與二氧化鈦奈米粒子形成 p-n 異質結,有助於電子快速轉移到導電電極基底,並用於電荷分離。當 10 wt% 的氧化鎳和 1.5 wt% 的氧化銅與二氧化鈦混合時,裝置的性能將分別比純二氧化鈦提高 2.02 倍和 2.28 倍。
    同時,當在二氧化鈦/氧化鎳(10 wt%)奈米複合材料中加入碳點時,功率轉換效率是純二氧化鈦奈米粒子的 2.88 倍。然而,在二氧化鈦/氧化銅中摻入碳點會降低器件的性能。在 PSC 中,碳點在二氧化鈦 ETL 上的自旋塗層促進了過氧化物太陽能電池和 ETL 之間更多的電子注入。從這一結果來看,碳點在介面上起到了電荷傳輸器的作用,從而提高了器件的性能。


    Renewable technologies are regarded as clean energy sources, and efficient utilization of these
    resources minimizes environmental consequences and is sustainable based on present and future
    economic and social demands. The potential of creating clean, sustainable electricity in large
    amounts from renewable energy sources has piqued attention throughout the world and is
    motivated by recent technology advancements. There are various types of renewable energy
    sources; such as thermal, bioenergy, hydro, tidal, wind, wave, and geothermal energy. It’s a great
    way to reduce greenhouse gas emissions and global warming by replacing traditional energy
    sources. From renewable energy sources, photovoltaic technology is particularly appealing for the
    direct conversion of sunlight into high-quality electricity energy among other renewable energy
    technologies. As a result, the development of Dye-sensitized solar cells (DSSCs) and perovskite
    solar cells (PSCs) enabled the collection of limitless energy from the sun/artificial light, which
    achieved efficient and cost-effective solar energy conversion.
    Dye-sensitized solar cells employ a dye molecule to absorb sunlight and generate an electron-hole pair, which is then transported through a porous semiconductor to produce electricity. Dyesensitized solar cells based on nanocomposites of n-p type semiconductor devices, TiO2, NiO, and CuO, were presented in this thesis. Perovskite solar cells, on the other hand, use a perovskite material as the light absorber and electron transporter. Both technologies have shown remarkable progress in recent years, with record power conversion efficiencies exceeding 25% for PSCs and 14% for DSSCs. Furthermore, the effect of adding c-dots on the photoanodes DSSCs and PSCs was assessed. The improvement of light-harvesting systems and charge separation based on nanocomposites for enhancing the power conversion efficiency in DSSCs enhancing the injection of electrons and blocking the holes in PSCs was a developing area of study. NiO and CuO form a p-n heterojunction with TiO2 nanoparticles, which contributes to the fast transfer of an electron to the conductive electrode substrate and is used for charge separation. Meanwhile, when c-dots are added to TiO2/NiO(10 wt%) nanocomposites the power conversion efficiency was increased 2.88 times that of pure TiO2 nanoparticles. However, doping of C-dot to TiO2/CuO degraded the performance of the devices. In PSCs, the spin-coating of c-dots on TiO2 ETL was facilitated by more injection of electrons between perovskite solar cells and ETLs. From this result, c-dots act as charge transporters at the interface to boost the device's performance.

    List of Figures viii Chapter 1 1 Introduction 1 1.1 Background of the study 1 1.2 Statement of the problems 4 1.3 Aims and Objectives of the Study 4 1.4 Scopes and Significance of the Study 5 1.5 Nanomaterials for a variety of research fields. 6 Chapter 2 8 Review of the Literature 8 2.1 Historical Background of Photovoltaic Solar Cells 8 2.2 Generation of photovoltaic solar cells 8 2.2.1 First generation solar cells (Si-Wafer based solar cells) 8 2.2.2 Second Generation Solar Cells -Thin Film Solar Cells 9 2.2.3 Third Generation of Solar Cells 11 2.3 Research Motivation 15 Chapter 3 17 Synergistic effect of C-dots on Photovoltaic performance of heterojunction n-TiO2/p-NiO for Dye-Sensitized Solar Cells. 17 3.1 Introduction 17 3.2 Experimental Section 18 3.2.1 Materials and Methods 18 3.2.2 Synthesis of nanocomposites 19 3.2.3 Measurements of PCE, IPCE, and N719 adsorption 20 3.3 Results and Discussions 21 3.3.1 Characterization of materials 21 3.3.2 Performance of dye-sensitized solar cells 25 3.3.3 Effects of additives in charge transfer in TiO2-based DSSCs. 28 Chapter 4 41 Enhancement of Perovskite Solar Cells by TiO2-Carbon Dot Electron Transport Film Layers 41 4.1 Introduction 41 4.2 Experimental Section 43 4.2.1 Materials and methods 43 4.2.2 Fabrication of TiO2 blocking layer, C-dot, and perovskite solar cell films 44 4.3 Results and Discussion 45 4.4 Conclusions and future perspective 57

    1. Qin, Y.; Peng, Q.; Ruthenium sensitizers and their applications in dye-sensitized solar cells.
    Int. J. Photoenergy, 2012 (2012).
    2. Burke, M. J.; Stephens, J. C.; Political power and renewable energy futures: Energy Res. Soc.
    Sci., 35 (2018) 78-93.
    3. Güney, T.; Renewable energy, non-renewable energy and sustainable development. Int. J.
    Sustain. Dev. World Ecol., 26 (2019) 389-397.
    4. Omer, A. M.; Energy, environment and sustainable development. Renew. Sust. Energ. Rev., 12
    (2008) 2265-2300.
    5. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F.; Renewable energy resources: Current status, future
    prospects and their enabling technology. Renew. Sust. Energ. Rev., 39 (2014) 748-764.
    6. Sharma, S.; Jain, K. K.; Sharma, A.; Solar cells: in research and applications— Mater. sci.
    appl., 6 (2015) 1145.
    7. Bagher, A. M.; Vahid, M. M. A.; Mohsen, M.; Types of solar cells and application. J Opt, 3
    (2015) 94-113.
    8. Suhaimi, S.; Shahimin, M. M.; Alahmed, Z.; Chyský, J.; Reshak, A.; Materials for enhanced
    dye-sensitized solar cell performance: Electrochemical application. Int. J. Electrochem. Sci, 10
    (2015) 2859-2871.
    9. Grätzel, M.; Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar
    cells. J. Photochem. Photobiol. A, 164 (2004) 3-14.
    10. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl‐Ebinger, J.; Ho‐Baillie, A.
    W.; Solar cell efficiency tables (version 51). Prog Photovolt, 26 (2018) 3-12.
    11. Ganesan, S.; Muthuraaman, B.; Mathew, V.; Madhavan, J.; Maruthamuthu, P.;
    Suthanthiraraj, S. A.; Performance of a new polymer electrolyte incorporated with
    diphenylamine in nanocrystalline dye-sensitized solar cell. Sol. Energy Mater Sol. Cells, 92
    (2008) 1718-1722.
    12. Grätzel, M.; Perspectives for dye‐sensitized nanocrystalline solar cells. Prog Photovolt, 8
    (2000) 171-185.
    13. Adedokun, O.; Titilope, K.; Awodugba, A. O.; Review on natural dye-sensitized solar cells
    (DSSCs). Int. J. Eng. Technol., 2 (2016) 34-41.
    14. Shalini, S.; Prasanna, S.; Mallick, T. K.; Senthilarasu, S.; Review on natural dye sensitized
    solar cells: operation, materials and methods. Renew. Sust. Energ. Rev., 51 (2015) 1306-
    1325.
    15. Hosseinnezhad, M.; Gharanjig, K.; Yazdi, M. K.; Zarrintaj, P.; Moradian, S.; Saeb, M. R.;
    Stadler, F. J.; Dye-sensitized solar cells based on natural photosensitizers: A green view from
    Iran. J. Alloys Compd., 828 (2020) 154329.
    16. Guo, X.-Z.; Luo, Y.-H.; Zhang, Y.-D.; Huang, X.-C.; Li, D.-M.; Meng, Q.-B.; Study on the
    effect of measuring methods on incident photon-to-electron conversion efficiency of dye-
    sensitized solar cells by home-made setup. Rev. Sci. Instrum., 81 (2010) 103106.
    17. Wang, F.; Li, X.; Du, J.; Duan, H.; Wang, H.; Gou, Y.; Yang, L.; Fan, L.; Yang, J.; Rosei, F.;
    Coordinating light management and advance metal nitride interlayer enables MAPbI3 solar
    cells with> 21.8% efficiency. Nano Energy, (2021) 106765.
    18. Varghese, R. J.; Parani, S.; Thomas, S.; Oluwafemi, O. S.; Wu, J., Introduction to
    nanomaterials: synthesis and applications, in: J. Nanomater., 2019, pp. 75-95.
    19. Hussain, M. S., Synthesis of Bulk Nanostructured Materials by High Speed Turbulent
    Flow—A Method of Electrodepositing Nanocrystalline Nickel, in: J. Chromatogr. B, 2018,
    pp. 55-88.
    20. Wang, Z.; Pan, X.; He, Y.; Hu, Y.; Gu, H.; Wang, Y.; Piezoelectric nanowires in energy
    harvesting applications. Adv. Mater. Sci. Eng., 2015 (2015).
    21. Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R. P.; ALOthman, Z. A.; Mola,
    G. T.; Novel development of nanoparticles to bimetallic nanoparticles and their composites: a
    review. J. King Saud Univ. Eng. Sci., 31 (2019) 257-269.
    22. Shaikh, J. S.; Shaikh, N. S.; Mali, S. S.; Patil, J. V.; Pawar, K. K.; Kanjanaboos, P.; Hong, C.
    K.; Kim, J. H.; Patil, P. S.; Nanoarchitectures in dye-sensitized solar cells: metal oxides,
    oxide perovskites and carbon-based materials. Nanoscale, 10 (2018) 4987-5034.
    23. Hong, R.; Li, J.; Chen, L.; Liu, D.; Li, H.; Zheng, Y.; Ding, J.; Synthesis, surface
    modification and photocatalytic property of ZnO nanoparticles. Powder Technol., 189 (2009)
    426-432.
    24. Hovel, H. J.; Solar cells. NASA STI/Recon Technical Report A, 76 (1975) 20650.
    25. Adams, W. G.; Day, R. E.; V. The action of light on selenium. Proc. R. Soc. Lond., 25 (1877)
    113-117.
    26. Einstein, A.; 7 On the Quantum Theory of Radiation. The Old Quantum Theory: The
    Commonwealth and International Library: New J. Phys., (2016) 167.
    27. Saga, T.; Advances in crystalline silicon solar cell technology for industrial mass production.
    NPG Asia Mater., 2 (2010) 96-102.
    28. McEvoy, A.; Castaner, L.; Markvart, T., Solar cells: materials, manufacture and operation,
    Learn Publ, 2012.
    29. Würfel, P.; Würfel, U., Physics of solar cells: from basic principles to advanced concepts,
    JWS, 2016.
    30. Dimitrijev, S., Principles of semiconductor devices, Oxford university press New York, 2012.
    31. Bertolli, M.; Solar cell materials. Course: Solid State II. Department of Physics, University of
    Tennessee, Knoxville, (2008).
    32. Chopra, K.; Paulson, P.; Dutta, V.; Thin‐film solar cells: an overview. Progress in
    Photovoltaics: Int. j. eng. res. appl., 12 (2004) 69-92.
    33. Imamzai, M.; Aghaei, M.; Thayoob, Y. H. M.; Forouzanfar, M., A review on comparison
    between traditional silicon solar cells and thin-film CdTe solar cells, in: Proc. ... natl. conf.
    (Nat-Grad, 2012, pp. 1-5.
    34. Goswami, D. Y.; Kreith, F., Energy J., Crc Press, 2007.
    35. Luque, A.; Hegedus, S., IEEE J. Photovolt., Wiley Online Library, 2003.
    36. Elsabawy, K. M.; El-Hawary, W. F.; Refat, M. S.; Advanced synthesis of titanium-doped-
    tellerium-cadmium mixtures for high performance solar cell applications as one of
    renewable source of energy. Int. j. biol. chem. sci., 10 (2012) 1869-1879.
    37. Ananthakumar, S.; Kumar, J. R.; Babu, S. M.; Third-Generation Solar Cells: Concept,
    Materials and Performance-An Overview. Environ. Sci. Nano, (2019) 305-339.
    38. Albero, J.; Clifford, J. N.; Palomares, E.; Quantum dot based molecular solar cells. Coord
    Chem Rev, 263 (2014) 53-64.
    39. Ganesh, B.; Supriya, Y. V.; Vaddeswaram, G.; Recent advancements and techniques in
    manufacture of solar cells: organic solar cells. Int. j. comput. sci. electron. eng., 2 (2013)
    565-573.
    40. Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D.; Polymer-based
    solar cells. Mater. Today Commun., 10 (2007) 28-33.
    41. Shalini, S.; Balasundaraprabhu, R.; Kumar, T. S.; Prabavathy, N.; Senthilarasu, S.; Prasanna,
    S.; Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review.
    Int. J. Energy Res., 40 (2016) 1303-1320.
    42. Shelke, R.; Thombre, S.; Patrikar, S.; Status and perspectives of dyes used in dye sensitized
    solar cells. Int. J. Renew. Energy Res., 3 (2017) 54-61.
    43. Zhang, S.; Yang, X.; Numata, Y.; Han, L.; Highly efficient dye-sensitized solar cells:
    progress and future challenges. Energy Environ., 6 (2013) 1443-1464.
    44. van Hal, P. A.; Wienk, M. M.; Kroon, J. M.; Janssen, R. A.; TiO 2 sensitized with an oligo
    (p-phenylenevinylene) carboxylic acid: a new model compound for a hybrid solar cell. J.
    Mater. Chem. A, 13 (2003) 1054-1057.
    45. Navrotsky, A.; Energetics and crystal chemical systematics among ilmenite, lithium niobate,
    and perovskite structures. Chem. Mater., 10 (1998) 2787-2793.
    46. Chen, P.-Y.; Qi, J.; Klug, M. T.; Dang, X.; Hammond, P. T.; Belcher, A. M.;
    Environmentally responsible fabrication of efficient perovskite solar cells from recycled car
    batteries. Energy Environ., 7 (2014) 3659-3665.
    47. Rajendran, S.; Naushad, M.; Raju, K.; Boukherroub, R., Emerging nanostructured materials
    for energy and environmental science, Springer, 2019.
    48. Li, Y.; Improvement of the performance for perovskite solar cell. (2020).
    49. Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y.; Perovskite-based solar cells: materials,
    methods, and future perspectives. J. Nanomater., 2018 (2018).
    50. Rao, M. K.; Sangeetha, D.; Selvakumar, M.; Sudhakar, Y.; Mahesha, M.; Review on
    persistent challenges of perovskite solar cells’ stability. Solar Energy, 218 (2021) 469-491.
    51. Kodati, R. B.; Rao, P. N.; A review of solar cell fundamentals and technologies. Adv Sci Lett,
    26 (2020) 260-271.
    52. Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K.; Effects of doping, morphology and film-
    thickness of photo-anode materials for dye sensitized solar cell application–A review.
    Renew. Sust. Energ. Rev., 60 (2016) 356-376.
    53. Martín, C.; Ziółek, M.; Douhal, A.; Ultrafast and fast charge separation processes in real dye-
    sensitized solar cells. J. Photochem. Photobiol. C, 26 (2016) 1-30.
    54. Ranganathan, P.; Sasikumar, R.; Chen, S.-M.; Rwei, S.-P.; Sireesha, P.; Enhanced
    photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on
    nitrogen-doped graphene nanocomposite as a photoanode. J. Colloid Interface Sci., 504
    (2017) 570-578.
    55. Chou, C.-S.; Lin, Y.-J.; Yang, R.-Y.; Liu, K.-H.; Preparation of TiO2/NiO composite
    particles and their applications in dye-sensitized solar cells. Powder Technol., 22 (2011) 31-
    42.
    56. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.;
    Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.; Grätzel, M.; Dye-sensitized solar cells
    with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers.
    Nat. Chem., 6 (2014) 242-247.
    57. Geleta, T. A.; Imae, T.; Influence of Additives on Zinc Oxide-Based Dye Sensitized Solar
    Cells. Bull. Chem. Soc. Jpn., 93 (2020) 611-620.
    58. Bhande, S. S.; Shinde, D. V.; Tehare, K. K.; Patil, S. A.; Mane, R. S.; Naushad, M.;
    Alothman, Z.; Hui, K.; Han, S. H.; DSSCs synergic effect in thin metal oxide layer-
    functionalized SnO2 photoanodes. J. Photochem. Photobiol. A: Chem., 295 (2014) 64-69.
    59. Tan, R.; Wei, Z.; Liang, J.; Lv, Z.; Chen, B.; Qu, J.; Yan, W.; Ma, J.; Enhanced open-circuit
    photovoltage and charge collection realized in pearl-like NiO/CuO composite nanowires
    based p-type dye sensitized solar cells. Mater. Res. Bull., 116 (2019) 131-136.
    60. Mahmoudabadi, Z. D.; Eslami, E.; One-step synthesis of CuO/TiO2 nanocomposite by
    atmospheric microplasma electrochemistry–Its application as photoanode in dye-sensitized
    solar cell. J. Alloys Compd., 793 (2019) 336-342.
    61. Langmar, O.; Ganivet, C. R.; Schol, P.; Scharl, T.; de la Torre, G.; Torres, T.; Costa, R. D.;
    Guldi, D. M.; Improving charge injection and charge transport in CuO-based p-type DSSCs–
    a quick and simple precipitation method for small CuO nanoparticles. J. Mater. Chem. A, 6
    (2018) 5176-5180.
    62. Jiang, T.; Bujoli-Doeuff, M.; Farré, Y.; Pellegrin, Y.; Gautron, E.; Boujtita, M.; Cario, L.;
    Jobic, S.; Odobel, F.; CuO nanomaterials for p-type dye-sensitized solar cells. RSC Adv., 6
    (2016) 112765-112770.
    63. Gao, N.; Huang, L.; Li, T.; Song, J.; Hu, H.; Liu, Y.; Ramakrishna, S.; Application of carbon
    dots in dye‐sensitized solar cells: a review. J. Appl. Polym. Sci., 137 (2020) 48443.
    64. Mehmood, U.; Khan, A. U. H.; Qaiser, A. A.; Bashir, S.; Younas, M.; Nanocomposites of
    carbon allotropes with TiO2 as effective photoanodes for efficient dye-sensitized solar cells.
    Mater. Lett., 228 (2018) 125-128.
    65. Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L.-Z.; Tung, C.-H.; Zhang, T.;
    Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J.
    Mater. Chem. A, 2 (2014) 3344-3351.
    66. Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.;
    Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots.
    ACS nano, 6 (2012) 5102-5110.
    67. Hong, W.; Zhou, Y.; Lv, C.; Han, Z.; Chen, G.; NiO quantum dot modified TiO2 toward
    robust hydrogen production performance. ACS Sustain. Chem. Eng.g, 6 (2018) 889-896.
    68. Efa, M. T.; Imae, T.; Effects of carbon dots on ZnO nanoparticle-based dye-sensitized solar
    cells. Electrochim. Acta, 303 (2019) 204-210.
    69. Etefa, H. F.; Imae, T.; Yanagida, M.; Enhanced photosensitization by carbon dots Co-
    adsorbing with dye on p-type semiconductor (Nickel Oxide) solar cells. ACS Appl. Mater.
    Interfaces, 12 (2020) 18596-18608.
    70. Geleta, T. A.; Imae, T.; Nanocomposite photoanodes consisting of p-NiO/n-ZnO
    heterojunction and carbon quantum dot additive for dye-sensitized solar cells. ACS Appl.
    Nano Mater., 4 (2021) 236-249.
    71. Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L.; Two-dimensional graphene bridges
    enhanced photoinduced charge transport in dye-sensitized solar cells. ACS nano, 4 (2010)
    887-894.
    72. Kokulnathan, T.; Kumar, E. A.; Wang, T.-J.; Cheng, I.-C.; Strontium tungstate-modified
    disposable strip for electrochemical detection of sulfadiazine in environmental samples.
    Ecotoxicol. Environ. Saf.., 208 (2021) 111516.
    73. Naik, B.; Nanda, B.; Das, K. K.; Parida, K.; Enhanced photocatalytic activity of nanoporous
    BiVO4/MCM-41 co-joined nanocomposites for solar energy conversion and environmental
    pollution abatement. J. Environ. Chem. Eng., 5 (2017) 4524-4530.
    74. Bekena, F.; Kuo, D.-H.; 10 nm sized visible light TiO2 photocatalyst in the presence of MgO
    for degradation of methylene blue. Mater Sci Semicond Process, 116 (2020) 105152.
    75. Olurode, K.; Neelgund, G. M.; Oki, A.; Luo, Z.; A facile hydrothermal approach for
    construction of carbon coating on TiO2 nanoparticles. Spectrochim. Acta A Mol. Biomol.
    Spectrosc., 89 (2012) 333-336.
    76. Varunkumar, K.; Hussain, R.; Hegde, G.; Ethiraj, A. S.; Effect of calcination temperature on
    Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and
    morphological studies. Mater Sci Semicond Process, 66 (2017) 149-156.
    77. Lu, X.; Lv, X.; Sun, Z.; Zheng, Y.; Nanocomposites of poly (L-lactide) and surface-grafted
    TiO2 nanoparticles: Synthesis and characterization. Eur. Polym. J., 44 (2008) 2476-2481.
    78. Devadas, B.; Imae, T.; Effect of carbon dots on conducting polymers for energy storage
    applications. ACS Sustain. Chem. Eng., 6 (2018) 127-134.
    79. De, B.; Karak, N.; A green and facile approach for the synthesis of water soluble fluorescent
    carbon dots from banana juice. RSC Adv., 3 (2013) 8286-8290.
    80. Ku, Y.; Lin, C.-N.; Hou, W.-M.; Characterization of coupled NiO/TiO2 photocatalyst for the
    photocatalytic reduction of Cr (VI) in aqueous solution. J Mol Catal A Chem, 349 (2011) 20-
    27.
    81. Bhattacharya, S.; Datta, J.; Wide-low energy coupled semi-conductor layers of TiO2–CdX
    boosting the performance of DSSC. Sol. Energy, 208 (2020) 674-687.
    82. Wu, W.-Q.; Xu, Y.-F.; Rao, H.-S.; Su, C.-Y.; Kuang, D.-B.; Multistack integration of three-
    dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized
    solar cells. J. Am. Chem. Soc., 136 (2014) 6437-6445.
    83. Chen, T.; Hu, W.; Song, J.; Guai, G. H.; Li, C. M.; Interface functionalization of
    photoelectrodes with graphene for high performance dye‐sensitized solar cells. Adv. Funct.
    Mater., 22 (2012) 5245-5250.
    84. Sekar, N.; Ramasamy, R. P.; Electrochemical impedance spectroscopy for microbial fuel cell
    characterization. J Microb Biochem Technol S, 6 (2013) 1-14.
    85. Holm, S.; Holm, T.; Martinsen, Ø. G.; Simple circuit equivalents for the constant phase
    element. PLoS One, 16 (2021) e0248786.
    86. Cruz-Manzo, S.; Greenwood, P.; Analytical transfer function to simulate the dynamic
    response of the finite-length Warburg impedance in the time-domain. J Energy Storage, 55
    (2022) 105529.
    87. Sun, H.; Zhang, L.; Wang, Z.-S.; Single-crystal CoSe2 nanorods as an efficient
    electrocatalyst for dye-sensitized solar cells. J. Mater. Chem. A, 2 (2014) 16023-16029.
    88. Salam, Z.; Vijayakumar, E.; Subramania, A.; Sivasankar, N.; Mallick, S.; Graphene quantum
    dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized
    solar cells. Sol. Energy Mater Sol. Cells, 143 (2015) 250-259.
    89. Tsai, C.-H.; Fei, P.-H.; Lin, C.-M.; Shiu, S.-L.; CuO and CuO/graphene nanostructured thin
    films as counter electrodes for Pt-free dye-sensitized solar cells. Coatings, 8 (2018) 21.
    90. Wei, L.; Yang, Y.; Xia, X.; Fan, R.; Su, T.; Shi, Y.; Yu, J.; Li, L.; Jiang, Y.; Band edge
    movement in dye sensitized Sm-doped TiO2 solar cells: a study by variable temperature
    spectroelectrochemistry. RSC advances, 5 (2015) 70512-70521.
    91. Wu, Z.-S.; Song, X.-C.; Liu, Y.-D.; Zhang, J.; Wang, H.-S.; Chen, Z.-J.; Liu, S.; Weng, Q.;
    An, Z.-W.; Guo, W.-J.; New organic dyes with varied arylamine donors as effective co-
    sensitizers for ruthenium complex N719 in dye sensitized solar cells. J. Power Sources, 451
    (2020) 227776.
    92. Barar, A.; Manaila-Maximean, D.; Vladescu, M.; Schiopu, P.; Simulation of charge carrier
    transport mechanisms for quantum dot-sensitized solar cell structures. Univ. Politeh. Buchar.
    Ser. A, 81 (2019) 265-270.
    93. Gelderman, K.; Lee, L.; Donne, S.; Flat-band potential of a semiconductor: using the Mott–
    Schottky equation. J Chem Educ, 84 (2007) 685.
    94. Wang, W.; Wang, J.; Wang, Z.; Wei, X.; Liu, L.; Ren, Q.; Gao, W.; Liang, Y.; Shi, H.; p–n
    junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-
    light photocatalytic performance. J. Chem. Soc., Dalton trans., 43 (2014) 6735-6743.
    95. Anandan, K.; Rajesh, K.; Gayathri, K.; Sharma, S. V.; Hussain, S. M.; Rajendran, V.; Effects
    of rare earth, transition and post transition metal ions on structural and optical properties and
    photocatalytic activities of zirconia (ZrO2) nanoparticles synthesized via the facile
    precipitation process. Physica E Low Dimens. Syst. Nanostruct., 124 (2020) 114342.
    96. Lu, H.; Fan, W.; Dong, H.; Liu, L.; Dependence of the irradiation conditions and crystalline
    phases of TiO2 nanoparticles on their toxicity to Daphnia magna. Environmental Science:
    Nano, 4 (2017) 406-414.
    97. Dey, S.; Nag, S.; Santra, S.; Ray, S. K.; Guha, P. K.; Voltage-controlled NiO/ZnO p–n
    heterojunction diode: A new approach towards selective VOC sensing. Microsyst. Nanoeng.,
    6 (2020) 35.
    98. Yu, Z.; Moussa, H.; Liu, M.; Schneider, R.; Moliere, M.; Liao, H.; Heterostructured metal
    oxides-ZnO nanorods films prepared by SPPS route for photodegradation applications. Surf.
    Coat. Technol., 375 (2019) 670-680.
    99. Pansri, S.; Supruangnet, R.; Nakajima, H.; Rattanasuporn, S.; Noothongkaew, S.; Band offset
    determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV
    photodetectors. J. Mater. Sci., 55 (2020) 4332-4344.
    100. Sproul, A.; Understanding the pn Junction. Sol. Energy Mater Sol. Cells, (2003).
    101. Barman, M. K.; Mitra, P.; Bera, R.; Das, S.; Pramanik, A.; Parta, A.; An efficient charge
    separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle
    composite.
    Nanoscale, 9 (2017) 6791-6799.
    102. Shukla, D.; Mollah, S.; Kumar, R.; Influence of TiO2 and ZnO on the conductivity and
    dielectric properties of copper-bismuth glasses. J. Phys. D, 101 (2007) 013708.
    103. Fang, X.; Li, M.; Guo, K.; Li, J.; Pan, M.; Bai, L.; Luoshan, M.; Zhao, X.; Graphene
    quantum dots optimization of dye-sensitized solar cells. Electrochim. Acta, 137 (2014) 634-
    638.
    104. Chan, Y. F.; Wang, C. C.; Chen, B. H.; Chen, C. Y.; Dye‐sensitized TiO2 solar cells based
    on nanocomposite photoanode containing plasma‐modified multi‐walled carbon nanotubes.
    Prog Photovolt, 21 (2013) 47-57.
    105. Rezaei, B.; Irannejad, N.; Ensafi, A. A.; Kazemifard, N.; The impressive effect of eco-
    friendly carbon dots on improving the performance of dye-sensitized solar cells. Sol Energy,
    182 (2019) 412-419.
    106. Basu, K.; Selopal, G. S.; Mohammadnezad, M.; Akilimali, R.; Wang, Z. M.; Zhao, H.;
    Vetrone, F.; Rosei, F.; Hybrid graphene/metal oxide anodes for efficient and stable dye
    sensitized solar cell. Electrochim. Acta, 349 (2020) 136409.
    107. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T.; Organometal halide perovskites as
    visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131 (2009) 6050-6051.
    108. Kim, H.; Lim, K.-G.; Lee, T.-W.; Planar heterojunction organometal halide perovskite solar
    cells: roles of interfacial layers. Energy Environ. Sci., 9 (2016) 12-30.
    109. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I.; High-
    performance photovoltaic perovskite layers fabricated through intramolecular exchange.
    Science, 348 (2015) 1234-1237.
    110. Mazzarella, L.; Lin, Y. H.; Kirner, S.; Morales‐Vilches, A. B.; Korte, L.; Albrecht, S.;
    Crossland, E.; Stannowski, B.; Case, C.; Snaith, H. J.; Infrared light management using a
    nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction
    tandem solar cells with efficiency above 25%. Adv. Energy Mater., 9 (2019) 1803241.
    111. Yang, Z.; Chueh, C.-C.; Liang, P.-W.; Crump, M.; Lin, F.; Zhu, Z.; Jen, A. K.-Y.; Effects of
    formamidinium and bromide ion substitution in methylammonium lead triiodide toward
    high-performance perovskite solar cells. Nano Energy, 22 (2016) 328-337.
    112. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo,
    J.; Kim, E. K.; Noh, J. H.; Iodide management in formamidinium-lead-halide–based
    perovskite layers for efficient solar cells. Science, 356 (2017) 1376-1379.
    113. Liu, D.; Kelly, T. L.; Perovskite solar cells with a planar heterojunction structure prepared
    using room-temperature solution processing techniques. Nat. Photonics, 8 (2014) 133-138.
    114. You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.;
    Zhou, H.; Low-temperature solution-processed perovskite solar cells with high efficiency
    and flexibility. ACS nano, 8 (2014) 1674-1680.
    115. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G.; Lead-free solid-stat
    e organic–inorganic halide perovskite solar cells. Nat. Photonics, 8 (2014) 489-494.
    116. Nagaoka, H.; Ma, F.; Dequilettes, D. W.; Vorpahl, S. M.; Glaz, M. S.; Colbert, A. E.;
    Ziffer, M. E.; Ginger, D. S.; Zr incorporation into TiO2 electrodes reduces hysteresis and
    improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. J.
    Phys. Chem. Lett., 6 (2015) 669-675.
    117. Wang, Y.; Wan, J.; Ding, J.; Hu, J. S.; Wang, D.; A rutile TiO2 electron transport layer for
    the enhancement of charge collection for efficient perovskite solar cells. Angew. Chem. Int.
    Ed., 58 (2019) 9414-9418.
    118. Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.;
    Low-temperature solution-processed tin oxide as an alternative electron transporting layer
    for efficient perovskite solar cells. J. Am. Chem. Soc., 137 (2015) 6730-6733.
    119. Lu, H.; Tian, W.; Gu, B.; Zhu, Y.; Li, L.; TiO2 electron transport bilayer for highly efficient
    planar perovskite solar cell. Small, 13 (2017) 1701535.
    120. Cao, J.; Wu, B.; Chen, R.; Wu, Y.; Hui, Y.; Mao, B. W.; Zheng, N.; Efficient, hysteresis‐
    free, and stable perovskite solar cells with ZnO as electron‐transport layer: effect of surface
    passivation. Adv. Mater., 30 (2018) 1705596.
    121. Zhen, C.; Wu, T.; Chen, R.; Wang, L.; Liu, G.; Cheng, H.-M.; Strategies for modifying
    TiO2 based electron transport layers to boost perovskite solar cells. ACS Sustain. Chem.
    Eng., 7 (2019) 4586-4618.
    122. Zhu, Y.; Deng, K.; Sun, H.; Gu, B.; Lu, H.; Cao, F.; Xiong, J.; Li, L.; TiO2 phase junction
    electron transport layer boosts efficiency of planar perovskite solar cells. Adv. Sci., 5 (2018)
    1700614.
    123. Parida, B.; Singh, A.; Oh, M.; Jeon, M.; Kang, J.-W.; Kim, H.; Effect of compact TiO2 layer
    on structural, optical, and performance characteristics of mesoporous perovskite solar cells.
    Mater. Today Commun., 18 (2019) 176-183.
    124. Prochowicz, D.; Tavakoli, M. M.; Wolska-Pietkiewicz, M.; Jędrzejewska, M.; Trivedi, S.;
    Kumar, M.; Zakeeruddin, S. M.; Lewiński, J.; Graetzel, M.; Yadav, P.; Suppressing
    recombination in perovskite solar cells via surface engineering of TiO2 ETL. Sol Energy,
    197 (2020) 50-57.
    125. Baker, S. N.; Baker, G. A.; Luminescent carbon nanodots: emergent nanolights. Angew.
    Chem. Int. Ed., 49 (2010) 6726-6744.
    126. Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T.; Carbon nanodots: synthesis, properties and
    applications. J. Mater. Chem., 22 (2012) 24230-24253.
    127. Geleta, T. A.; Imae, T.; Nanocomposite photoanodes consisting of p-NiO/n-ZnO
    heterojunction and carbon quantum dot additive for dye-sensitized solar cells. ACS Appl.
    Nano Mater., 4 (2021) 236-249.
    128. Chang, C. C.; Geleta, T. A.; Imae, T.; Effect of carbon dots on supercapacitor performance
    of carbon nanohorn/conducting polymer composites. Bull. Chem. Soc. Jpn., 94 (2021) 454-
    462.
    129. Do, T. T. A.; Grijalvo, S.; Imae, T.; Garcia-Celma, M. J.; Rodríguez-Abreu, C.; A
    nanocellulose-based platform towards targeted chemo-photodynamic/photothermal cancer
    therapy. Carbohydr. Polym., 270 (2021) 118366.
    130. Huang, K.-W.; Chen, Y.-H.; Li, M.-H.; Wu, Y.-S.; Chiu, P.-T.; Lin, Y.-P.; Tung, Y.-L.;
    Tsai, S.-Y.; Chen, P.; Low-temperature growth of uniform ultrathin TiO2 blocking layer for
    efficient perovskite solar cell. Org. Electron., 75 (2019) 105379.
    131. Ren, H.; Zou, X.; Cheng, J.; Ling, T.; Bai, X.; Chen, D.; Facile solution spin-coating SnO2
    thin film covering cracks of TiO2 hole blocking layer for perovskite solar cells. Coatings, 8
    (2018) 314.
    132. Pang, S.; Zhang, C.; Zhang, H.; Dong, H.; Chen, D.; Zhu, W.; Xi, H.; Chang, J.; Lin, Z.;
    Zhang, J.; Boosting performance of perovskite solar cells with Graphene quantum dots
    decorated SnO2 electron transport layers. Surf Sci, 507 (2020) 145099.
    133. Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M. A.;
    Eickemeyer, F. T.; Kim, M.; Pseudo-halide anion engineering for α-FAPbI3 perovskite solar
    cells. Nature, 592 (2021) 381-385.
    134. Wang, Y.; Zhang, Y.; Feng, Y.; Zhang, X.; Liu, J.; Hou, W.; Jia, J.; Zhang, B., XPS study
    on changes of lead on the channel surface of microchannel plate reduced by hydrogen, in:
    IOP Conference Series: Mater. Sci. Eng. C, IOP Publishing, 2019, 022067.
    135. McGettrick, J. D.; Hooper, K.; Pockett, A.; Baker, J.; Troughton, J.; Carnie, M.; Watson, T.;
    Sources of Pb (0) artefacts during XPS analysis of lead halide perovskites. Mater. Lett., 251
    (2019) 98-101.
    136. Ma, J.; Qin, M.; Li, Y.; Zhang, T.; Xu, J.; Fang, G.; Lu, X.; Guanidinium doping enabled
    low-temperature fabrication of high-efficiency all-inorganic CsPbI2Br perovskite solar cells.
    J. Mater. Chem. A, 7 (2019) 27640-27647.
    137. Patil, J. V.; Mali, S. S.; Hong, C. K.; A‐Site Rubidium Cation‐Incorporated CsPbI2Br All‐
    Inorganic Perovskite Solar Cells Exceeding 17% Efficiency. Sol. RRL, 4 (2020) 2000164.
    138. Chen, P.; Bai, Y.; Wang, S.; Lyu, M.; Yun, J. H.; Wang, L.; In situ growth of 2D perovskite
    capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater., 28 (2018)
    1706923.
    139. Ashraf, A.; Dastgheib, S. A.; Mensing, G.; Shannon, M. A.; Surface characteristics of
    selected carbon materials exposed to supercritical water. J Supercrit Fluids, 76 (2013) 32-
    40.
    140. Pham, N. D.; Singh, A.; Chen, W.; Hoang, M. T.; Yang, Y.; Wang, X.; Wolff, A.; Wen, X.;
    Jia, B.; Sonar, P.; Self-assembled carbon dot-wrapped perovskites enable light trapping
    and defect passivation for efficient and stable perovskite solar cells. J Supercrit Fluids, 9
    (2021) 7508-7521.
    141. Chen, X.; Wang, X.; Fang, D.; A review on C1s XPS-spectra for some kinds of carbon
    materials. Fuller. Nanotub. Carbon Nanostructures, 28 (2020) 1048-1058.
    142. Bi, D.; Gao, P.; Scopelliti, R.; Oveisi, E.; Luo, J.; Grätzel, M.; Hagfeldt, A.; Nazeeruddin,
    M. K.; High‐performance perovskite solar cells with enhanced environmental stability based
    on amphiphile‐modified CH3NH3PbI3. Adv. Mater., 28 (2016) 2910-2915.
    143. Gao, N.; Huang, L.; Li, T.; Song, J.; Hu, H.; Liu, Y.; Ramakrishna, S.; Application of
    carbon dots in dye‐sensitized solar cells: a review. J. Appl. Polym. Sci., 137 (2020) 48443.
    144. Xu, X.; Bao, Z.; Tang, W.; Wu, H.; Pan, J.; Hu, J.; Zeng, H.; Surface states engineering
    carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to
    boost solar water splitting. Carbon, 121 (2017) 201-208.
    145. Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D. L.;
    Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of
    graphene quantum dots. J. Am. Chem. Soc., 136 (2014) 3760-3763.
    146. Belarbi, E.; Vallés-Pelarda, M.; Hames, B. C.; Sanchez, R. S.; Barea, E. M.; Maghraoui-
    Meherzi, H.; Mora-Seró, I.; Transformation of PbI2, PbBr2 and PbCl2 salts into MAPbBr3
    perovskite by halide exchange as an effective method for recombination reduction. Phys.
    Chem. Chem. Phys., 19 (2017) 10913-10921.
    147. Song, J.; Zheng, E.; Bian, J.; Wang, X.-F.; Tian, W.; Sanehira, Y.; Miyasaka, T.; Low-
    temperature SnO2-based electron selective contact for efficient and stable perovskite solar
    cells. J. Mater. Chem. A, 3 (2015) 10837-10844.
    148. Li, C.; Wang, F.; Xu, J.; Yao, J.; Zhang, B.; Zhang, C.; Xiao, M.; Dai, S.; Li, Y.; Tan, Z. a.;
    Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge
    extraction and suppressed charge recombination. Nanoscale, 7 (2015) 9771-9778.
    149. Pandey, M.; Kapil, G.; Sakamoto, K.; Hirotani, D.; Kamrudin, M. A.; Wang, Z.; Hamada,
    K.; Nomura, D.; Kang, H.-G.; Nagayoshi, H.; Efficient, hysteresis free, inverted planar
    flexible perovskite solar cells via perovskite engineering and stability in cylindrical
    encapsulation. Sustain. Energy Fuels, 3 (2019) 1739-1748.
    150. Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A.
    K. Y.; Additive enhanced crystallization of solution‐processed perovskite for highly
    efficient planar‐heterojunction solar cells. Adv. Mater., 26 (2014) 3748-3754.
    151. Wu, R.; Yang, J.; Xiong, J.; Liu, P.; Zhou, C.; Huang, H.; Gao, Y.; Yang, B.; Efficient
    electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-
    circuit voltage. Org. Electron., 26 (2015) 265-272.
    152. Wang, J.-F.; Zhu, L.; Zhao, B.-G.; Zhao, Y.-L.; Song, J.; Gu, X.-Q.; Qiang, Y.-H.; Surface
    engineering of perovskite films for efficient solar cells. Sci. Rep., 7 (2017) 1-9.
    153. Li, W.; Jin, G.; Hu, H.; Li, J.; Yang, Y.; Chen, Q.; Phosphotungstic acid and WO3
    incorporated TiO2 thin films as novel photoanodes in dye-sensitized solar cells.
    Electrochim. Acta, 153 (2015) 499-507.

    無法下載圖示 全文公開日期 2033/10/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE