簡易檢索 / 詳目顯示

研究生: 柯冠宇
Guan-Yu Ke
論文名稱: 使用有限元素法與田口方法分析前方腰椎骨融合術配合後方椎弓根固定器時椎籠擺放位置之最佳化設計
The Optimum Cage Position And Orientation On The ALIF With Pedicle Screw Fixation: A Finite Element Analysis And The Taguchi Method
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 徐慶琪
Ching-Chi Hsu
趙國華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 前方腰椎骨融合術椎籠椎弓根固定器有限元素分析田口方法脊椎穩定度
外文關鍵詞: Anterior lumbar interbody fusion (ALIF), cage, pedicle screw fixation, finite element analysis, Taguchi method, spinal stability
相關次數: 點閱:241下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

前方腰椎骨融合術(Anterior Lumbar Interbody Fusion, ALIF)已廣泛使用於治療腰椎椎間盤病變,為了增加骨融合成功率,提升手術後脊椎的穩定度是首要課題,能夠提供術後穩定度的參數也一直被專家學者們研究著。本研究主要目的為使用有限元素法,分析在前方腰椎骨融合術配合後方椎弓根固定器時,椎籠擺放位置對於穩定度的影響,並利用田口方法探討椎籠擺放的最佳參數組合。
本研究使用之模型為腰椎第4-5節(L4-L5),依照田口方法將椎籠擺放位置設定為控制因子,包含1.前後(AP);2.寬度(ML);3.角度(CD),鬆質骨強度設定為誤差因子,包含1. 40MPa;2. 100MPa,由L9直交表配置不同因子擺放水準,以軸向壓力及四種力矩(屈曲、伸展、側彎、扭轉)分別施加於L4上方,並將L5底部完全拘束,執行直交表實驗,所得數據使用田口方法進行解析。
經過有限元素分析,結果顯示,即使已經使用椎弓根固定器,椎籠擺放位置還是對脊椎的穩定度有影響,在屈曲以及伸展負載時,擺放前方則位移量愈少;側彎、扭轉及軸向壓力時,擺放寬度愈寬則位移量愈少;擺放角度雖然沒有非常顯著的效果,但是前窄後寬的角度表現較佳,綜合以上結果,得出最佳化組合。經過田口方法驗證,本研究之最佳擺放位置明顯增加手術環節穩定度,因此建議前方骨融合術於椎籠植入時,椎籠位置應靠近前方、靠近外側及使用前窄後寬的角度,並配合椎弓根固定器使用,如此可增強脊椎整體穩定度以及有利於術後骨融合。


Anterior lumbar interbody fusion (ALIF) with cages has been widely used to treat internal disc degeneration. However, different cage positions and their orientations may affect the initial stability leading to different fusion results. The aim of the present study was to evaluate the optimum cage position and orientation for ALIF with block cages and supplemental pedicle screw fixation using finite element analysis and Taguchi method.
The three-dimensional finite element model were used to simulate the stability of the L4/L5 fusion segment under five different loading conditions (axial compression, flexion, extension, lateral bending, and axial rotation). The Taguchi method was used to determine the optimized placement of the cages. Three control factors (the anterior-posterior position, medial-lateral position, and convergent-divergent angle between the two cages) and one noise factor (the strength of cancellous bone, 40MPa and 100MPa) were indemnified in the parameter design. Each control factor had three levels. Therefore, the L9 orthogonal array was used to set different factor levels.
From the results of FEA and the Taguchi method showed that cage position affected the spinal stability even when the pedicle screw fixation was used. In flexion and extension, the rotation displacement was decreased when the cages were placed at anterior position. The widely bilateral placement of the cages showed more stability than central regions. The convergent-divergent angle between the two cages had slight effect on the segmental stability, but divergent angle had good performance in the clinical outcome to avoid the subsidence and increase the fusion rate. Therefore, we suggested that the optimal cage position has an anterior and widely bilateral placement and a diverging angle between the two cages on ALIF with pedicle screw fixation.

論文摘要-----------------------------I ABSTRACT---------------------------II 誌 謝 ---------------------------III 目 錄 ---------------------------IV 符號索引 ---------------------------VII 圖表索引 ---------------------------IX 第一章 緒論-------------------------1 1.1研究動機與目的-------------------1 1.2脊椎解剖學構造簡介----------------2 1.3脊椎的運動方式-------------------3 1.4骨融合手術簡介-------------------4 1.5脊椎後方固定器簡介----------------5 1.6文獻回顧------------------------5 1.7本文架構------------------------8 第二章 研究方法----------------------16 2.1田口方法簡介---------------------16 2.2有限元素法簡介-------------------21 2.3有限元素模型之建立----------------22 2.3.1腰椎之建立--------------------22 2.3.2椎籠之建立--------------------23 2.3.3椎弓根固定器之建立--------------23 2.3.4整體模型之組立------------------24 2.4有限元素分析----------------------24 2.4.1材料性質----------------------24 2.4.2邊界條件----------------------25 2.4.3接觸問題----------------------26 2.4.4網格-------------------------27 2.4.5收斂性分析--------------------28 2.5分析參數-------------------------29 第三章 結果--------------------------43 3.1收斂性分析結果--------------------43 3.2腰椎L4位移分析結果比較-------------43 3.3總應變能分析結果比較---------------44 3.3.1椎弓根固定器總應變能分析結果------45 3.3.2腰椎L5上端板總應變能分析結果------45 3.3.3補骨總應變能分析結果-------------46 3.4最佳化配置分析結果比較--------------46 第四章 討論---------------------------69 4.1以田口方法得到最佳化設計之探討--------69 4.2驗證實驗結果探討-------------------70 4.3綜合討論--------------------------71 第五章 結論與未來展望------------------76 5.1結論-----------------------------76 5.2未來展望--------------------------77 參考文獻-------------------------------78 作者簡介-------------------------------82

[1]參考資料網址, "http://www.spinesurgeon.co.uk/."
[2]Tiusanen H., Seitsalo S., Osterman K., and Soini J., "Anterior interbody lumbar fusion in severe low back pain," Clinical Orthopaedics and Related Research, No. 324, pp. 153-163, (1996).
[3]Chen T. C. and Maiman D. J., "Anterior lumbar fusions," Techniques in Neurosurgery, vol. 4, No. 3, pp. 256-264, (1998).
[4]Simon A., Seizeur R., Person H., Forlodou P., Dam Hieu P., and Besson G., "Anterior lumbar interbody fusion for treatment of failed back surgery syndrome: A retrospective study of 46 cases," Neurochirurgie, vol. 55, No. 3, pp. 309-313, (2009).
[5]Lund T., Oxland T. R., Jost B., Cripton P., Grassmann S., Etter C., and Nolte L. P., "Interbody cage stabilisation in the lumbar spine," Journal of Bone and Joint Surgery - Series B, vol. 80, No. 2, pp. 351-359, (1998).
[6]Weiner B. K. and Fraser R. D., "Spine update lumbar interbody cages," Spine, vol. 23, No. 5, pp. 634-640, (1998).
[7]McAfee P. C., "Interbody fusion cages in reconstructive operations on the spine," Journal of Bone and Joint Surgery - Series A, vol. 81, No. 6, pp. 859-880, (1999).
[8]Beutler W. J. and Peppelman Jr W. C., "Anterior lumbar fusion with paired BAK standard and paired BAK proximity cages: Subsidence incidence, subsidence factors, and clinical outcome," Spine Journal, vol. 3, No. 4, pp. 289-293, (2003).
[9]Choi J. Y. and Sung K. H., "Subsidence after anterior lumbar interbody fusion using paired stand-alone rectangular cages," European Spine Journal, vol. 15, No. 1, pp. 16-22, (2006).
[10]Rathonyi G. C., Oxland T. R., Gerich U., Grassmann S., and Nolte L. P., "The role of supplemental translaminar screws in anterior lumbar interbody fixation: A biomechanical study," European Spine Journal, vol. 7, No. 5, pp. 400-407, (1998).
[11]Nydegger T., Oxland T. R., Hoffer Z., Cottle W., and Nolte L. P., "Does anterolateral cage insertion enhance immediate stabilization of the functional spinal unit?: A biomechanical investigation," Spine, vol. 26, No. 22, pp. 2491-2497, (2001).
[12]Abbushi A., Čabraja M., Thomale U.-W., Woiciechowsky C., and Kroppenstedt S. N., "The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation," European Spine Journal, vol. 18, pp. 1621-1628, (2009).
[13]游祥明、宋晏仁、古宏海、傅毓秀、林光華,解剖學Anatomy,華杏出版股份有限公司,台北 (2005)。
[14]Moore K. L. and Dalley A. F., "Clinically oriented anatomyed.," (2009).
[15]Wilke H. J., Wenger K., and Claes L., "Testing criteria for spinal implants: Recommendations for the standardization of in vitro stability testing of spinal implants," European Spine Journal, vol. 7, No. 2, pp. 148-154, (1998).
[16]Oxland T. R., Hoffer Z., Nydegger T., Rathonyi G. C., and Nolte L. P., "A comparative biomechanical investigation of anterior lumbar interbody cages: Central and bilateral approaches," Journal of Bone and Joint Surgery - Series A, vol. 82, No. 3, pp. 383-393, (2000).
[17]Ray C. D., "Threaded titanium cages for lumbar interbody fusion.," SPINE, vol. 22, No. 6, pp. 667-79, (1997).
[18]Hitchon P. W. and Taggard D. A., "Lumbar spine fusion enhanced by pedicle screw fixation," Techniques in Neurosurgery, vol. 4, No. 3, pp. 211-215, (1998).
[19]Glaser J., Stanley M., Sayre H., Woody J., Found E., and Spratt K., "A 10-year follow-up evaluation of lumbar spine fusion with pedicle screw fixation," Spine, vol. 28, No. 13, pp. 1390-1395, (2003).
[20]Anjarwalla N. K., Morcom R. K., and Fraser R. D., "Supplementary stabilization with anterior lumbar intervertebral fusion - A radiologic review," Spine, vol. 31, No. 11, pp. 1281-1287, (2006).
[21]Tuli J., Tuli S., Eichler M. E., and Woodard E. J., "A comparison of long-term outcomes of translaminar facet screw fixation and pedicle screw fixation: A prospective study," Journal of Neurosurgery: Spine, vol. 7, No. 3, pp. 287-292, (2007).
[22]參考資料網址, " http://www.bnasurg.com/patient-resources-back-pain.php."
[23]Lowe T. G., Hashim S., Wilson L. A., O'Brien M. F., Smith D. A. B., Diekmann M. J., and Trommeter J., "A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support," Spine, vol. 29, No. 21, pp. 2389-2394, (2004).
[24]Niemeyer T., Bovingloh A. S., Halm H., and Liljenqvist U., "Results after anterior-posterior lumbar spinal fusion: 2-5 Years follow-up," International Orthopaedics, vol. 28, No. 5, pp. 298-302, (2004).
[25]Wang S. T., Goel V. K., Fu C. Y., Kubo S., Choi W., Liu C. L., and Chen T. H., "Posterior instrumentation reduces differences in spine stability as a result of different cage orientations an in vitro study," Spine, vol. 30, No. 1, pp. 62-67, (2005).
[26]Vadapalli S., Robon M., Biyani A., Sairyo K., Khandha A., and Goel V. K., "Effect of lumbar interbody cage geometry on construct stability: A cadaveric study," Spine, vol. 31, No. 19, pp. 2189-2194, (2006).
[27]Fowlkes W. Y. and Creveling C. M., "Engineering Methods for Robust Product Design Using Taguchi Methods in Technology and Product Development " Reading, MA: Addison-Wesley, p. 403, (1995).
[28]Dar F. H., Meakin J. R., and RM A., "Statistical methods in finite element analysis," J Biomech, vol. 35, No. 9, pp. 1155-1161, (2002).
[29]林秀雄,田口方法與品質工程,新知企業管理顧問有限公司,台北 (1991)。
[30]鄭燕琴,田口品質工程技術理論與實務,中華民國品質管制學會,台北 (1993)。
[31]實威科技股份有限公司編著,COSMOSWorks 電腦輔助工程分析入門篇Designer,全華圖書股份有限公司,台北 (2008)。
[32]Fan C. Y., Hsu C. C., Chao C. K., Lin S. C., and Chao K. H., "Biomechanical comparisons of different posterior instrumentation constructs after two-level ALIF: A finite element study," Medical Engineering and Physics, vol. 32, No. 2, pp. 203-211, (2010).
[33]Sterba W., Kim D. G., Fyhrie D. P., Yeni Y. N., and Vaidya R., "Biomechanical analysis of differing pedicle screw insertion angles," Clinical Biomechanics, vol. 22, No. 4, pp. 385-391, (2007).
[34]范昌源,「椎籠對於腰椎機械性質之參數分析」,碩士論文,國立台灣科技大學,台北 (2001)。
[35]Keyak J. H. and Skinner H. B., "Three-dimensional finite element modelling of bone: Effects of element size," Journal of Biomedical Engineering, vol. 14, No. 6, pp. 483-489, (1992).
[36]Grant J. P., Oxland T. R., and Dvorak M. F., "Mapping the structural properties of the lumbosacral vertebral endplates," Spine, vol. 26, No. 8, pp. 889-896, (2001).
[37]Polikeit A., Ferguson S. J., Nolte L. P., and Orr T. E., "The importance of the endplate for interbody cages in the lumbar spine," European Spine Journal, vol. 12, No. 6, pp. 556-561, (2003).
[38]Denoziere G. and Ku D. N., "Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc," Journal of Biomechanics, vol. 39, No. 4, pp. 766-775, (2006).
[39]Keun S. K., Tai K. Y., and Jung C. L., "Radiological changes in the bone fusion site after posterior lumbar interbody fusion using carbon cages impacted with laminar bone chips: Follow-up study over more than 4 years," Spine, vol. 30, No. 6, pp. 655-660, (2005).

QR CODE