簡易檢索 / 詳目顯示

研究生: Atetegeb Meazah Haregewoin
Atetegeb - Meazah Haregewoin
論文名稱: Investigation of Surface Reactions on Negative Electrodes of Lithium Ion Batteries Using Infrared Spectroscopy
Investigation of Surface Reactions on Negative Electrodes of Lithium Ion Batteries Using Infrared Spectroscopy
指導教授: 林昇佃
Shawn D. Lin
口試委員: 黃炳照
Bing-Joe Hwang
江志強
Jyh-Chiang Jiang
王復民
Wang, Fu-Ming
吳乃立
Nae-Lih Wu
潘金平
Jing-Pin Pan
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 172
中文關鍵詞: SEIspectroelectrochemical cellin situ DRIFTSATRmaleimideadditivesimpedanceFTIRsuperoxide radicaloxygen imputityECPCDECelectrolyte compositionlithium ion battery
外文關鍵詞: SEI, spectroelectrochemical cell, in situ DRIFTS, ATR, maleimide, additives, impedance, FTIR, superoxide radical, oxygen imputity, EC, PC, DEC, electrolyte composition, lithium ion battery
相關次數: 點閱:370下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The solid electrolyte interface formation process during the first charging/discharging of lithium ion battery consumes lithium ions permanently and results in an irreversible capacity. In this work, analysis of the SEI composition and formation mechanism in different electrolytes and electrolyte additive is performed using infrared spectroscopic and characterization techniques including microscopic and electrochemical techniques. The effect of trace amount of oxygen in the reduction of propylene carbonate (PC) is shown by combining CV, FTIR and XPS analysis. ATR-FTIR analysis, performed inside a glove box, confirms the formation of solvated Li2CO3 and (R-OCO2-Li(PC)2)2 due to propylene carbonate (PC) reduction in the potential range from OCV to -0.1 V. Our experimental results suggest that in the potential range from OCV to 1.6 V, PC, in the presence of O2, can be easily decomposed by the superoxide ion through a nucleophilic attack at the ethereal carbon atom and form (PC)2LiOC(O)OCH(CH3)CH2OLi(PC).
    A direct comparison of the reduction of PC, EC and DEC as single, binary and ternary solvent systems is studied. ATR-FTIR performed in a glove box after LSV indicates that the reduction behavior of an alkyl carbonate is not significantly influenced by the presence of other alkyl carbonate. (CH(CH3)CH2OCO2Li)2 and Li2CO3 are formed due to PC reduction, EC is reduced to (CH2OCO2Li)2 and Li2CO3, and DEC reduction leads to the formation of (CH2=CH-OCO2CH2CH3)Li. The reduction product of EC is responsible for the formation of a passivating surface film which prevents exfoliation caused by PC. We have designed a spectroelectrochemical cell which is compatible with our DRIFTS spectrometer and can work effectively for in-situ analysis of the SEI layer in a half cell mode of lithium ion battery. The electrochemical performance of the cell is tested with both aqueous and non-aqueous systems and the results confirm the good applicability of the cell for electrochemical reactions. The effectiveness of the specroelectrochemical cell for FTIR analysis of SEI layer is confirmed by comparing the results with ATR-FTIR experiments performed in a glove box. The reduction products and SEI formation mechanism of N,N’-1,4-phenylenedimaleimide (MI-2) is examined with 0.1% MI-2 in 1 M LiPF6/PC, 1 M LiPF6/ EC:PC (3:2) and 1 M LiPF6 in EC:PC:DEC (3:2:5) systems. The CV results reveal that MI-2 reduction occurs prior to the solvents whose reduction in the binary and ternary solvent systems is suppressed by MI-2. However, in the single solvent system, PC co-intercalation and reduction could not be inhibited even in the presence of MI-2. FTIR confirms that ring opening of maleimide group occurs in the binary and ternary solvent system but not in the single solvent system.
    In this work, we used both ex-situ ATR and in-situ DRIFTS mode FTIR analysis of surface films. Compared to the ATR mode, DRIFTS mode is good for the analysis of rough surfaces and coatings. This makes it more suitable to study electrode surface in lithium ion battery since they have rough surfaces and their roughness can increase by the SEI formation process. Furthermore, DRIFTS is an ideal technique for in-situ spectroelectrochemical analysis since it needs no IRE. In this work, we designed in-situ DRIFTS cell and carefully examined the analysis technique to study the SEI layer in lithium ion battery. The methodology that we have developed can eliminate the influence of electrolyte absorption which is a common problem when using in situ FTIR to study SEI layer. The electrochemical and spectroscopic measurements show the effectiveness of the technique and the methodology developed for the analysis of SEI in lithium ion battery.


    The solid electrolyte interface formation process during the first charging/discharging of lithium ion battery consumes lithium ions permanently and results in an irreversible capacity. In this work, analysis of the SEI composition and formation mechanism in different electrolytes and electrolyte additive is performed using infrared spectroscopic and characterization techniques including microscopic and electrochemical techniques. The effect of trace amount of oxygen in the reduction of propylene carbonate (PC) is shown by combining CV, FTIR and XPS analysis. ATR-FTIR analysis, performed inside a glove box, confirms the formation of solvated Li2CO3 and (R-OCO2-Li(PC)2)2 due to propylene carbonate (PC) reduction in the potential range from OCV to -0.1 V. Our experimental results suggest that in the potential range from OCV to 1.6 V, PC, in the presence of O2, can be easily decomposed by the superoxide ion through a nucleophilic attack at the ethereal carbon atom and form (PC)2LiOC(O)OCH(CH3)CH2OLi(PC).
    A direct comparison of the reduction of PC, EC and DEC as single, binary and ternary solvent systems is studied. ATR-FTIR performed in a glove box after LSV indicates that the reduction behavior of an alkyl carbonate is not significantly influenced by the presence of other alkyl carbonate. (CH(CH3)CH2OCO2Li)2 and Li2CO3 are formed due to PC reduction, EC is reduced to (CH2OCO2Li)2 and Li2CO3, and DEC reduction leads to the formation of (CH2=CH-OCO2CH2CH3)Li. The reduction product of EC is responsible for the formation of a passivating surface film which prevents exfoliation caused by PC. We have designed a spectroelectrochemical cell which is compatible with our DRIFTS spectrometer and can work effectively for in-situ analysis of the SEI layer in a half cell mode of lithium ion battery. The electrochemical performance of the cell is tested with both aqueous and non-aqueous systems and the results confirm the good applicability of the cell for electrochemical reactions. The effectiveness of the specroelectrochemical cell for FTIR analysis of SEI layer is confirmed by comparing the results with ATR-FTIR experiments performed in a glove box. The reduction products and SEI formation mechanism of N,N’-1,4-phenylenedimaleimide (MI-2) is examined with 0.1% MI-2 in 1 M LiPF6/PC, 1 M LiPF6/ EC:PC (3:2) and 1 M LiPF6 in EC:PC:DEC (3:2:5) systems. The CV results reveal that MI-2 reduction occurs prior to the solvents whose reduction in the binary and ternary solvent systems is suppressed by MI-2. However, in the single solvent system, PC co-intercalation and reduction could not be inhibited even in the presence of MI-2. FTIR confirms that ring opening of maleimide group occurs in the binary and ternary solvent system but not in the single solvent system.
    In this work, we used both ex-situ ATR and in-situ DRIFTS mode FTIR analysis of surface films. Compared to the ATR mode, DRIFTS mode is good for the analysis of rough surfaces and coatings. This makes it more suitable to study electrode surface in lithium ion battery since they have rough surfaces and their roughness can increase by the SEI formation process. Furthermore, DRIFTS is an ideal technique for in-situ spectroelectrochemical analysis since it needs no IRE. In this work, we designed in-situ DRIFTS cell and carefully examined the analysis technique to study the SEI layer in lithium ion battery. The methodology that we have developed can eliminate the influence of electrolyte absorption which is a common problem when using in situ FTIR to study SEI layer. The electrochemical and spectroscopic measurements show the effectiveness of the technique and the methodology developed for the analysis of SEI in lithium ion battery.

    Abstract i Acknowledgments iii Table of Contents vi List of Figures ix List of Tables xiv List of Scheme xvi List of Abbreviations xvii Chapter 1 Introduction 1 1.1. Lithium Ion Battery 1 1.2. Components of Lithium Ion Battery 4 1.2.1. Anode Materials 5 1.2.2. Cathode Materials 10 1.2.3. Electrolytes 13 1.3. Solid Electrolyte Interface (SEI) 21 1.4. Techniques for the analysis of SEI layer 28 Chapter 2 Experimental Methods 31 2.1. Cyclic Voltammetry (CV) 31 2.2. Battery Test 34 2.3. Electrochemical Impedance Spectroscopy (EIS) 35 2.4. Fourier Transform Infrared Spectroscopy (FTIR) 37 2.5. X-ray Photoelectron Spectroscopy (XPS) 42 2.6. The scanning electron microscope (SEM) 43 Chapter 3 Study of Surface Film Formation: Effect of Oxygen on the Reduction Mechanism of Propylene Carbonate 45 3.1. Introduction 45 3.2. Experimental Methods 46 3.3. Result and Discussion 47 3.3.1. Cyclic Voltammetry Measurements 47 3.3.2. FTIR Measurements 50 3.3.3. XPS Analysis 61 3.4. Summary 64 Chapter 4 Comparative Study on the Reduction of Various Alkyl Carbonates and SEI Formation in Lithium Ion Battery 65 4.1. Introduction 65 4.2. Experimental Methods 67 4.3. Results 69 4.3.1. Electrochemical cycling 69 4.3.2. Electrochemical Impedance Spectroscopy Analysis 70 4.3.3. Morphology analysis with SEM 73 4.3.4. Cyclic voltammetry 75 4.3.5. FTIR Measurement 77 4.4. Discussion 88 4.5. Summary 90 Chapter 5 In-situ DRIFTS Cell Design and Analysis of the Solid Electrolyte Interface in Lithium Ion Battery 92 5.1. Introduction 92 5.2. Experimental Method 95 5.3. Result and Discussion 96 5.3.1. Cell Design 96 5.3.2. Electrochemical Performance test: 99 5.3.3. In situ FTIR measurement 100 5.4. Summary 110 Chapter 6 The Reduction of N,N’-1,4-phenylenedimaleimide electrolyte additive and its SEI formation process 111 6.1. Introduction 111 6.2. Experimental 112 6.3. Result and Discussion 113 6.3.1. Cyclic Voltammetry measurement 113 6.3.2. FTIR Measurement 115 6.3.3. Electrochemical Impedance spectroscopy Analysis 128 6.4. Summary 134 Chapter 7 General Conclusions and Recommendations 135 References 140 Appendices 164 I. Specification of in situ DRIFTS cell 165 II. Battery performance test using 1 M LiPF6/ PC and 1 M LiPF6/ EC/PC(3:2) with and without 0.1% MI-2 172

    [1] G. Hamhitzer, K. Pinkwart, C. Ripp, C. Schiller, Fundamentals and General Aspects of Electrochemical Power Sources, in: J.O. Besenhard (Ed.) Handbook of Battery Materials, Wilcy-VCH, I999, pp. 1.
    [2] M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon, 38 (2000) 183-197.
    [3] K.-i. Morigaki, J. Power Sources, 103 (2002) 253-264.
    [4] M. Yoshio, A. Kozawa, R.J. Brodd, Introduction: Development of Lithium-Ion Batteries, in: M. Yoshio, R.J. Brodd, A. Kozawa (Eds.) Lithium-Ion Batteries: Science and Technologies Springer-Verlag, New York, 2009.
    [5] W. van Schalkwijk, B. Scrosati, Advances in Lithium-Ion Batteries, Springer, 2002.
    [6] M. Wakihara, Materials Science and Engineering: R: Reports, 33 (2001) 109-134.
    [7] K. Xu, Chemical Reviews, 104 (2004) 4303-4418.
    [8] M. Inaba, Z. Ogumi, Electrical Insulation Magazine, IEEE, 17 (2001) 6-20.
    [9] J.-i. Yumuki, S.-i. Tobishima, Rechargeable Lithium Anodes, in: J. Besenhard (Ed.) Handbook of Battery Materials, Wilcy-VCH, Weinheim, I999, pp. 339-357.
    [10] H.J. Santner, K.C. Moller, W. Kohs, C. Veit, E. Lanzer, A. Trifonova, M.R. Wagner, P. Raimann, C. Korepp, J.O. Besenhard, M. Winter, ANODE-ELECTROLYTE REACTIONS IN Li BATTERIES: THE DIFFERENCES BETWEEN GRAPHITIC AND METALLIC ANODES, in: I. Barsukov, C. Johnson, J. Doninger, V. Barsukov (Eds.) New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, Springer Netherlands, 2006, pp. 171-188.
    [11] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics, 148 (2002) 405-416.
    [12] Z. Ogumi, M. Inaba, Carbon Anodes, in: W.A.v. Schalkwijk, B. Scrosati (Eds.) Advances in Lithium-Ion Batteries, KLUWER ACADEMIC, New York, 2002, pp. 79-102.
    [13] J. Chen, Materials, 6 (2013) 156-183.
    [14] Y.P. Wu, E. Rahm, R. Holze, J. Power Sources, 114 (2003) 228-236.
    [15] L.J. Hardwick, M. Marcinek, L. Beer, J.B. Kerr, R. Kostecki, J. Electrochem. Soc., 155 (2008) A442-A447.
    [16] Q. Zhang, R.E. White, J. Power Sources, 179 (2008) 793-798.
    [17] D. Aurbach, B. Markovsky, A. Rodkin, M. Cojocaru, E. Levi, H.-J. Kim, Electrochim. Acta, 47 (2002) 1899-1911.
    [18] D. Zane, A. Antonini, M. Pasquali, J. Power Sources, 97–98 (2001) 146-150.
    [19] Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo, H. Liu, J. Mater. Chem., 21 (2011) 8591-8596.
    [20] Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Angew. Chem. Int. Ed., 51 (2012) 2164-2167.
    [21] Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, Y. Ikuhara, L.-J. Wan, Journal of the American Chemical Society, 134 (2012) 7874-7879.
    [22] J. Yang, J.S. Tse, J Mater Chem A, (2013).
    [23] H.K. Liu, Z.P. Guo, J.Z. Wang, K. Konstantinov, J. Mater. Chem., 20 (2010) 10055-10057.
    [24] R. Teki, M.K. Datta, R. Krishnan, T.C. Parker, T.-M. Lu, P.N. Kumta, N. Koratkar, Small, 5 (2009) 2236-2242.
    [25] K. Peng, J. Jie, W. Zhang, S.-T. Lee, Appl. Phys. Lett., 93 (2008) 033105-033103.
    [26] J. Cho, J. Mater. Chem., 20 (2010) 4009-4014.
    [27] G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater., 19 (2007) 2336-2340.
    [28] S. Liang, X. Zhu, P. Lian, W. Yang, H. Wang, J. Solid State Chem., 184 (2011) 1400-1404.
    [29] Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M.R. Zachariah, C. Wang, Nano Lett., 13 (2013) 470-474.
    [30] P. Lichty, M. Wirz, P. Kreider, O. Kilbury, D. Dinair, D. King, A. Steinfeld, A.W. Weimer, International Journal of Applied Ceramic Technology, 10 (2013) 257-265.
    [31] T. Achiha, S. Shibata, T. Nakajima, Y. Ohzawa, A. Tressaud, E. Durand, J. Power Sources, 171 (2007) 932-937.
    [32] H. Buqa, C. Grogger, M.V. Santis Alvarez, J.O. Besenhard, M. Winter, J. Power Sources, 97–98 (2001) 126-128.
    [33] J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J.P. Peres, D. Talaga, M. Couzi, J.M. Tarascon, Adv. Funct. Mater., 17 (2007) 1765-1774.
    [34] C. Liang, M. Gao, H. Pan, Y. Liu, M. Yan, J. Alloys Compd., 575 (2013) 246-256.
    [35] T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc., 142 (1995) 1431-1435.
    [36] L. Zhao, Y.-S. Hu, H. Li, Z. Wang, L. Chen, Adv. Mater., 23 (2011) 1385-1388.
    [37] P.P. Prosini, R. Mancini, L. Petrucci, V. Contini, P. Villano, Solid State Ionics, 144 (2001) 185-192.
    [38] C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, J. Electrochem. Soc., 148 (2001) A102-A104.
    [39] C.Y. Ouyang, Z.Y. Zhong, M.S. Lei, Electrochem. Commun., 9 (2007) 1107-1112.
    [40] T. Piao, S.M. Park, C.H. Doh, S.I. Moon, J. Electrochem. Soc., 146 (1999) 2794-2798.
    [41] D. Linden, T.B. Reddy, Handbook of batteries, McGraw-Hill, 2002.
    [42] M.S. Dresselhaus, G. Dresselhaus, Advances in Physics, 51 (2002) 1-186.
    [43] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Mater. Today, 15 (2012) 564-589.
    [44] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater., 10 (1998) 725-763.
    [45] M.S. Whittingham, Prog. Solid State Chem., 12 (1978) 41-99.
    [46] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 15 (1980) 783-789.
    [47] A. Mendiboure, C. Delmas, P. Hagenmuller, Mater. Res. Bull., 19 (1984) 1383-1392.
    [48] J. Guan, M.L. Liu, Solid State Ionics, 110 (1998) 21-28.
    [49] G.R. Hu, Z.D. Peng, J.H. Yang, G.H. Zhou, Y.X. Liu, T Nonferr Metal Soc, 10 (2000) 817-819.
    [50] C. Bin, F. Qiang, X.W. Huang, Z.W. Xie, X.Q. He, H.Z. Sun, D.M. Xie, Chem J Chinese U, 24 (2003) 2260-2262.
    [51] H.J. Guo, X.H. Li, X.M. Zhang, S.M. Zeng, Z.X. Wang, W.J. Peng, J Cent South Univ T, 12 (2005) 44-49.
    [52] J. Tu, X.B. Zhao, G.S. Cao, J.P. Tu, T.J. Zhu, Mater. Lett., 60 (2006) 3251-3254.
    [53] W.W. Sun, F. Cao, Y.M. Liu, X.Z. Zhao, X.G. Liu, J.K. Yuan, J. Mater. Chem., 22 (2012) 20952-20957.
    [54] L.L. Xiong, Y.L. Xu, T. Tao, J. Song, J.B. Goodenough, J. Mater. Chem., 22 (2012) 24563-24568.
    [55] Y.Z. Wang, X. Shao, H.Y. Xu, M. Xie, S.X. Deng, H. Wang, J.B. Liu, H. Yan, J. Power Sources, 226 (2013) 140-148.
    [56] K.I. Gnanasekar, H.A. Cathrino, J.C. Jiang, A.A. Mrse, G. Nagasubrahmanian, D.H. Doughty, B. Rambabu, Solid State Ionics, 148 (2002) 299-309.
    [57] Y. Itou, Y. Ukyo, J. Power Sources, 146 (2005) 39-44.
    [58] X.J. Zhu, H.H. Chen, H. Zhan, H.X. Liu, D.L. Yang, Y.H. Zhou, Chin. J. Chem . 23 (2005) 491-495.
    [59] A. Yamada, S.C. Chung, K. Hinokuma J. Electrochem. Soc., 148 (2001) A224-A229.
    [60] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough, Energy & Environmental Science, 4 (2011) 269-284.
    [61] H. Yang, X.-L. Wu, M.-H. Cao, Y.-G. Guo, The Journal of Physical Chemistry C, 113 (2009) 3345-3351.
    [62] J. Molenda, M. Molenda, Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System, 2011.
    [63] G.G. Amatucci, J.M. Tarascon, L.C. Klein, Solid State Ionics, 83 (1996) 167-173.
    [64] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Materials Science and Engineering: R: Reports, 73 (2012) 51-65.
    [65] H.S. Liu, Z.R. Zhang, Z.L. Gong, Y. Yang, Electrochem. Solid-State Lett., 7 (2004) A190-A193.
    [66] Y.S. Lee, Y.K. Sun, K. Adachi, M. Yoshio, Electrochim. Acta, 48 (2003) 1031-1039.
    [67] Z. Shi-xi, L. Han-xing, O. Shi-xi, L. Qiang, J. Wuhan Univ. Technol.-Mat. Sci. Edit., 18 (2003) 5-8.
    [68] T. Ohzuku, Y. Makimura, Chem. Lett., (2001) 744-745.
    [69] X. Meng, S. Dou, W.-l. Wang, J. Power Sources, 184 (2008) 489-493.
    [70] K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Science, 311 (2006) 977-980.
    [71] M.M. Thackeray, P.J. Johnson, L.A. de Picciotto, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull., 19 (1984) 179-187.
    [72] K. Numata, Manganese-Containing Cathode-Active
    Materials for Lithium-Ion Batteries, in: M. Yoshio, R.J. Brodd, A. Kozawa (Eds.) Lithium-Ion Batteries: Science and Technologies, Springer New York, 2009, pp. 323-328.
    [73] J. B.Goodenough, Oxide Cathodes, in: W.A.v. Schalkwijk, B. Scrosati (Eds.) Advances in Lithium-Ion Batteries, KLUWER ACADEMIC, New York, 2002, pp. 135-154.
    [74] D. Aurbach, M.D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, R. Oesten, J. Power Sources, 81–82 (1999) 472-479.
    [75] Y. Xia, Y. Zhou, M. Yoshio, J. Electrochem. Soc., 144 (1997) 2593-2600.
    [76] P. Prosini, Electrode Materials for Lithium-ion Batteries, in: Iron Phosphate Materials as Cathodes for Lithium Batteries, Springer London, 2011, pp. 1-12.
    [77] R. Mukherjee, R. Krishnan, T.-M. Lu, N. Koratkar, Nano Energy, 1 (2012) 518-533.
    [78] Y. Koyama, N. Yabuuchi, I. Tanaka, H. Adachi, T. Ohzuku, J. Electrochem. Soc., 151 (2004) A1545-A1551.
    [79] Y. Koyama, Y. Makimura, I. Tanaka, H. Adachi, T. Ohzuku, J. Electrochem. Soc., 151 (2004) A1499-A1506.
    [80] T. Muraliganth, K.R. Stroukoff, A. Manthiram, Chem. Mater., 22 (2010) 5754-5761.
    [81] Y.-X. Li, Z.-L. Gong, Y. Yang, J. Power Sources, 174 (2007) 528-532.
    [82] A. Yamada, N. Iwane, Y. Harada, S.-i. Nishimura, Y. Koyama, I. Tanaka, Adv. Mater., 22 (2010) 3583-3587.
    [83] L. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, Y. Chen, Q. Kuang, J. Alloys Compd., 494 (2010) 415-419.
    [84] Y. Seok Jung, A.S. Cavanagh, Y. Yan, S.M. George, A. Manthiram, J. Electrochem. Soc., 158 (2011) A1298-A1302.
    [85] S.-W. Song, G.V. Zhuang, P.N. Ross, J. Electrochem. Soc., 151 (2004) A1162-A1167.
    [86] H. Cheng, C.B. Zhu, M. Lu, Y. Yang, J. Power Sources, 174 (2007) 1027-1031.
    [87] R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, Electrochem. Solid-State Lett., 13 (2010) A32-A35.
    [88] K. Xu, J. Electrochem. Soc., 156 (2009) A751-A755.
    [89] G.V. Zhuang, H. Yang, B. Blizanac, P.N. Ross, Electrochem. Solid-State Lett., 8 (2005) A441-A445.
    [90] D. Aurbach, M.D. Levi, E. Levi, A. Schechter, J. Phys. Chem. B, 101 (1997) 2195-2206.
    [91] C. Wang, A.J. Appleby, F.E. Little, J. Electroanal. Chem., 519 (2002) 9-17.
    [92] C. Korepp, W. Kern, E.A. Lanzer, P.R. Raimann, J.O. Besenhard, M. Yang, K.C. Moller, D.T. Shieh, M. Winter, J. Power Sources, 174 (2007) 628-631.
    [93] S.S. Zhang, J. Power Sources, 162 (2006) 1379-1394.
    [94] E.G. Leggesse, J.-C. Jiang, RSC Advances, 2 (2012) 5439-5446.
    [95] S.S. Zhang, K. Xu, J.L. Allen, T.R. Jow, J. Power Sources, 110 (2002) 216-221.
    [96] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Electrochim. Acta, 50 (2004) 247-254.
    [97] G.H. Newman, R.W. Francis, L.H. Gaines, B.M.L. Rao, J. Electrochem. Soc., 127 (1980) 2025-2027.
    [98] S.S. Zhang, K. Xu, T.R. Jow, J. Electrochem. Soc., 149 (2002) A586-A590.
    [99] D. Aurbach, Y. Ein‐Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, H. Yamin, J. Electrochem. Soc., 142 (1995) 2882-2890.
    [100] K. Xu, S. Zhang, T.R. Jow, W. Xu, C.A. Angell, Electrochem. Solid-State Lett., 5 (2002) A26-A29.
    [101] M. Schmidt, U. Heider, A. Kuehner, R. Oesten, M. Jungnitz, N. Ignat’ev, P. Sartori, J. Power Sources, 97–98 (2001) 557-560.
    [102] J.S. Gnanaraj, M.D. Levi, Y. Gofer, D. Aurbach, M. Schmidt, J. Electrochem. Soc., 150 (2003) A445-A454.
    [103] D. Aurbach, J.S. Gnanaraj, W. Geissler, M. Schmidt, J. Electrochem. Soc., 151 (2004) A23-A30.
    [104] K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang, M. Yoshio, Electrochim. Acta, 49 (2004) 4613-4622.
    [105] Y. Zhang, L. Wang, H. Feng, A. Zhang, C. Zhang, P. Zhang, Ionics, (2011) 1-6.
    [106] H.J. Santner, K.C. Moller, J. Ivanco, M.G. Ramsey, F.P. Netzer, S. Yamaguchi, J.O. Besenhard, M. Winter, J. Power Sources, 119-121 (2003) 368-372.
    [107] R. McMillan, H. Slegr, Z.X. Shu, W. Wang, J. Power Sources, 81-82 (1999) 20-26.
    [108] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, Electrochim. Acta, 47 (2002) 1423-1439.
    [109] T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, Z. Ogumi, J. Electrochem. Soc., 152 (2005) A2046-A2050.
    [110] D. Aurbach, J.S. Gnanaraj, W. Geissler, M. Schmidt, J. Electrochem. Soc., 151 (2004) A23-A30.
    [111] Y. Hu, W. Kong, Z. Wang, H. Li, X. Huang, L. Chen, Electrochem. Solid-State Lett., 7 (2004) A442-A446.
    [112] G. Chen, G.V. Zhuang, T.J. Richardson, G. Liu, J.P.N. Ross, Electrochem. Solid-State Lett., 8 (2005) A344-A347.
    [113] R. Mogi, M. Inaba, S.-K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi, J. Electrochem. Soc., 149 (2002) A1578-A1583.
    [114] L.J. Fu, H.P. Zhang, Y.P. Wu, H.Q. Wu, R. Holze, Electrochem. Solid-State Lett., 8 (2005) A456-A458.
    [115] O. Chusid, E. Ein Ely, D. Aurbach, M. Babai, Y. Carmeli, J. Power Sources, 43 (1993) 47-64.
    [116] J.O. Besenhard, M.W. Wagner, M. Winter, A.D. Jannakoudakis, P.D. Jannakoudakis, E. Theodoridou, J. Power Sources, 44 (1993) 413-420.
    [117] D. Aurbach, Y. Ein‐Eli, O. Chusid , Y. Carmeli, M. Babai, H. Yamin, J. Electrochem. Soc., 141 (1994) 603-611.
    [118] S. Komaba, B. Kaplan, T. Ohtsuka, Y. Kataoka, N. Kumagai, H. Groult, J. Power Sources, 119–121 (2003) 378-382.
    [119] Y. Ein-Eli, J. Electroanal. Chem., 531 (2002) 95-99.
    [120] J.-S. Shin, C.-H. Han, U.-H. Jung, S.-I. Lee, H.-J. Kim, K. Kim, J. Power Sources, 109 (2002) 47-52.
    [121] Y. Zhang, L. Wang, H. Feng, A. Zhang, C. Zhang, P. Zhang, Ionics, 17 (2011) 677-682.
    [122] Y.-K. Choi, K.-i. Chung, W.-S. Kim, Y.-E. Sung, S.-M. Park, J. Power Sources, 104 (2002) 132-139.
    [123] Y. Ein‐Eli, S.R. Thomas, V.R. Koch, J. Electrochem. Soc., 144 (1997) 1159-1165.
    [124] R. Chen, F. Wu, L. Li, Y. Guan, X. Qiu, S. Chen, Y. Li, S. Wu, J. Power Sources, 172 (2007) 395-403.
    [125] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, J. Electrochem. Soc., 151 (2004) A1659-A1669.
    [126] C. Wang, H. Nakamura, H. Komatsu, M. Yoshio, H. Yoshitake, J. Power Sources, 74 (1998) 142-145.
    [127] K.C. Moller, H.J. Santner, W. Kern, S. Yamaguchi, J.O. Besenhard, M. Winter, J. Power Sources, 119–121 (2003) 561-566.
    [128] G. Chen, G.V. Zhuang, T.J. Richardson, G. Liu, P.N. Ross, Electrochem. Solid-State Lett., 8 (2005) A344-A347.
    [129] G.H. Wrodnigg, J.O. Besenhard, M. Winter, J. Electrochem. Soc., 146 (1999) 470-472.
    [130] G.H. Wrodnigg, T.M. Wrodnigg, J.O. Besenhard, M. Winter, Electrochem. Commun., 1 (1999) 148-150.
    [131] E.G. Leggesse, J.-C. Jiang, The Journal of Physical Chemistry A, 116 (2012) 11025-11033.
    [132] Z.X. Shu, R.S. McMillan, J.J. Murray, I.J. Davidson, J. Electrochem. Soc., 143 (1996) 2230-2235.
    [133] R. McMillan, H. Slegr, Z.X. Shu, W. Wang, J. Power Sources, 81–82 (1999) 20-26.
    [134] M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, Z. Ogumi, Electrochim. Acta, 45 (1999) 99-105.
    [135] A. Naji, J. Ghanbaja, P. Willmann, D. Billaud, Electrochim. Acta, 45 (2000) 1893-1899.
    [136] K.C. Moller, T. Hodal, W.K. Appel, M. Winter, J.O. Besenhard, J. Power Sources, 97–98 (2001) 595-597.
    [137] Y. Matsuo, K. Fumita, T. Fukutsuka, Y. Sugie, H. Koyama, K. Inoue, J. Power Sources, 119–121 (2003) 373-377.
    [138] H. Ota, A. Kominato, W.-J. Chun, E. Yasukawa, S. Kasuya, J. Power Sources, 119–121 (2003) 393-398.
    [139] Y. Ma, G. Yin, P. Zuo, X. Tan, Y. Gao, P. Shi, Electrochem. Solid-State Lett., 11 (2008) A129-A131.
    [140] J.-A. Choi, S.-M. Eo, D.R. MacFarlane, M. Forsyth, E. Cha, D.-W. Kim, J. Power Sources, 178 (2008) 832-836.
    [141] M. Walkowiak, D. Waszak, G. Schroeder, B. Gierczyk, J Solid State Electrochem, 14 (2010) 2213-2218.
    [142] E. Kramer, R. Schmitz, S. Passerini, M. Winter, C. Schreiner, Electrochem. Commun., 16 (2012) 41-43.
    [143] G. Park, H. Nakamura, Y. Lee, M. Yoshio, J. Power Sources, 189 (2009) 602-606.
    [144] W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, Y. Yang, Energy & Environmental Science, 2 (2009) 1102-1108.
    [145] Y. Hu, W. Kong, Z. Wang, X. Huang, L. Chen, Solid State Ionics, 176 (2005) 53-56.
    [146] H.J. Santner, K.C. Moller, J. Ivančo, M.G. Ramsey, F.P. Netzer, S. Yamaguchi, J.O. Besenhard, M. Winter, J. Power Sources, 119–121 (2003) 368-372.
    [147] G.M. Ehrlich, Lithium-ion Batteries in: D. Linden, T.B. Reddy (Eds.) Handbook of batteries, McGraw-Hill, New York, 2002, pp. 35.31-35.94.
    [148] P. Verma, P. Maire, P. Novak, Electrochim. Acta, 55 (2010) 6332-6341.
    [149] K. Edstrom, M. Herstedt, D.P. Abraham, J. Power Sources, 153 (2006) 380-384.
    [150] F.-M. Wang, M.-H. Yu, Y.-J. Hsiao, Y. Tsai, B.-J. Hwang, Y.-Y. Wang, C.-C. Wan, Int. J. Electrochem. Sci., 6 (2011) 1014-1026.
    [151] S. Zhang, M.S. Ding, K. Xu, J. Allen, T.R. Jow, Electrochem. Solid-State Lett., 4 (2001) A206-A208.
    [152] D.P. Abraham, M.M. Furczon, S.H. Kang, D.W. Dees, A.N. Jansen, J. Power Sources, 180 (2008) 612-620.
    [153] M.C. Smart, B.V. Ratnakumar, J. Electrochem. Soc., 158 (2011) A379-A389.
    [154] D. Aurbach, J. Power Sources, 89 (2000) 206-218.
    [155] B. Veeraraghavan, J. Paul, B. Haran, B. Popov, J. Power Sources, 109 (2002) 377-387.
    [156] C.R. Yang, Y.Y. Wang, C.C. Wan, J. Power Sources, 72 (1998) 66-70.
    [157] G.V. Zhuang, K. Xu, H. Yang, T.R. Jow, P.N. Ross, J. Phys. Chem. B, 109 (2005) 17567-17573.
    [158] H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, M. Yamachi, J. Power Sources, 68 (1997) 311-315.
    [159] G.V. Zhuang, P.N. Ross, Electrochem. Solid-State Lett., 6 (2003) A136-A139.
    [160] K. Xu, Energies, 3 (2010) 135-154.
    [161] T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, Z. Ogumi, J. Power Sources, 150 (2005) 208-215.
    [162] D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, J. Power Sources, 94 (2001) 183-188.
    [163] M. Itagaki, N. Kobari, S. Yotsuda, K. Watanabe, S. Kinoshita, M. Ue, J. Power Sources, 148 (2005) 78-84.
    [164] R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, Electrochem. Solid-State Lett., 13 (2010) A32-A35.
    [165] J. Vetter, M. Holzapfel, A. Wuersig, W. Scheifele, J. Ufheil, P. Novak, J. Power Sources, 159 (2006) 277-281.
    [166] A. Wuersig, W. Scheifele, P. Novak, J. Electrochem. Soc., 154 (2007) A449-A454.
    [167] Y. Matsuo, R. Kostecki, F. McLarnon, J. Electrochem. Soc., 148 (2001) A687-A692.
    [168] D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, J. Power Sources, 103 (2001) 10-17.
    [169] T. Eriksson, A.M. Andersson, A.G. Bishop, C. Gejke, T. Gustafsson, J.O. Thomas, J. Electrochem. Soc., 149 (2002) A69-A78.
    [170] E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc., 144 (1997) L208-L210.
    [171] E. Peled, D. Golodnitsky, G. Ardel, V. Eshkenazy, Electrochim. Acta, 40 (1995) 2197-2204.
    [172] E.P.D. Golodnitsk, SEI on Lithium, Graphite, Disordered Carbons and Tin-Based Alloys, in: P.B. Balbuena, Y. Wang (Eds.) Lithium-Ion Batteries: Solid-Electrolyte Interphase, Imperial College Press, Singapore, 2004, pp. 1-69.
    [173] V. Aravindan, J. Gnanaraj, S. Madhavi, H.-K. Liu, Chemistry – A European Journal, 17 (2011) 14326-14346.
    [174] N. Leifer, M.C. Smart, G.K.S. Prakash, L. Gonzalez, L. Sanchez, K.A. Smith, P. Bhalla, C.P. Grey, S.G. Greenbaum, J. Electrochem. Soc., 158 (2011) A471-A480.
    [175] Nicolas Dupre, M. Cuisinier, D. Guyomard, The Electrochemical Society Interface (Fall 2011) 61-67.
    [176] M.C. Smart, B.V. Ratnakumar, S. Surampudi, Y. Wang, X. Zhang, S.G. Greenbaum, A. Hightower, C.C. Ahn, B. Fultz, J. Electrochem. Soc., 146 (1999) 3963-3969.
    [177] L. Gireaud, S. Grugeon, S. Laruelle, S. Pilard, J.-M. Tarascon, J. Electrochem. Soc., 152 (2005) A850-A857.
    [178] Y. Dai, Y. Wang, V. Eshkenazi, E. Peled, S.G. Greenbaum, J. Electrochem. Soc., 145 (1998) 1179-1183.
    [179] M. Herstedt, A.M. Andersson, H. Rensmo, H. Siegbahn, K. Edstrom, Electrochim. Acta, 49 (2004) 4939-4947.
    [180] K. Xu, U. Lee, S. Zhang, M. Wood, T.R. Jow, Electrochem. Solid-State Lett., 6 (2003) A144-A148.
    [181] H. Ota, T. Akai, H. Namita, S. Yamaguchi, M. Nomura, J. Power Sources, 119–121 (2003) 567-571.
    [182] M. Balasubramanian, H.S. Lee, X. Sun, X.Q. Yang, A.R. Moodenbaugh, J. McBreen, D.A. Fischer, Z. Fu, Electrochem. Solid-State Lett., 5 (2002) A22-A25.
    [183] T. Akai, H. Ota, H. Namita, S. Yamaguchi, M. Nomura, Phys. Scr., 2005 (2005) 408.
    [184] X.U.J.-M.T.J.-H.F.A.N.X.-Y.D.Q.-F.S.U.N.S.-G. Zhuang Quan-Chao, Chemical Journal of Chinese Universities, 29 (2008) 973-976.
    [185] M. Fleischmann, P.J. Hendra, A.J. McQuillan, R.L. Paul, E.S. Reid, Journal of Raman Spectroscopy, 4 (1976) 269-274.
    [186] J. Lei, L. Li, R. Kostecki, R. Muller, F. McLarnon, J. Electrochem. Soc., 152 (2005) A774-A777.
    [187] Y.B. Roh, K.M. Jeong, H.G. Cho, H.Y. Kang, Y.S. Lee, S.K. Ryu, B.S. Lee, J. Power Sources, 68 (1997) 271-276.
    [188] K.-i. Morigaki, A. Ohta, J. Power Sources, 76 (1998) 159-166.
    [189] X. Zhang, R. Kostecki, T.J. Richardson, J.K. Pugh, J. Philip N. Ross, J. Electrochem. Soc., 148 (2001) A1341-A1345.
    [190] A. Xiao, L. Yang, B.L. Lucht, S.-H. Kang, D.P. Abraham, J. Electrochem. Soc., 156 (2009) A318-A327.
    [191] Z. Honghe, L. Gao, S.B. Vincent, The Journal of Physical Chemistry C, 114 (2010).
    [192] S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta, 51 (2006) 1636-1640.
    [193] Y.C. Chang, H.J. Sohn, Journal Name: Journal of the Electrochemical Society; Journal Volume: 147; Journal Issue: 1; Other Information: PBD: Jan 2000, (2000) Medium: X; Size: page(s) 50-58.
    [194] K. Xu, S. Zhang, R. Jow, J. Power Sources, 143 (2005) 197-202.
    [195] S. Zhang, P. Shi, Electrochim. Acta, 49 (2004) 1475-1482.
    [196] J.S. Gnanaraj, R.W. Thompson, S.N. Iaconatti, J.F. DiCarlo, K.M. Abraham, Electrochem. Solid-State Lett., 8 (2005) A128-A132.
    [197] M.E. Spahr, T. Palladino, H. Wilhelm, A. Wursig, D. Goers, H. Buqa, M. Holzapfel, P. Novak, J. Electrochem. Soc., 151 (2004) A1383-A1395.
    [198] D. Aurbach, H. Teller, E. Levi J. Electrochem. Soc., 149 (2002) A1255-A1266.
    [199] T.L. ZHUANG QuanChao, WEI GuoZhen, DONG QuanFeng, SUN ShiGang, Chin. Sci. Bull., 54 (2009) 2627-2632.
    [200] M. Dolle, S. Grugeon, B. Beaudoin, L. Dupont, J.M. Tarascon, J. Power Sources, 97–98 (2001) 104-106.
    [201] M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, Z. Ogumi, J. Power Sources, 68 (1997) 221-226.
    [202] A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edstrom, J. Power Sources, 119-121 (2003) 522-527.
    [203] S. Amalraj, D. Aurbach, J Solid State Electrochem, 15 (2011) 877-890.
    [204] D. Aurbach, Y.S. Cohen, Identification of surface films on electrodes in non-aqueous electrolyte solutions: spectroscopic,electronic and morphological studies, in: P.B. Balbuena, Y. Wang (Eds.) Lithium-Ion Batteries: Solid-Electrolyte Interphase, Imperial College Press, Singapore, 2004, pp. 70-140.
    [205] K. Izutsu, Electrochemistry in Nonaqueous Solutions, Wiley-VCH, Weinheim, 2002.
    [206] K. Izutsu, Electrochemistry in Nonaqueous Solutions, Wiley-VCH, Germany, 2002
    [207] J. Wang, Analytical Electrochemistry, Wiley, New Jersey, 2006.
    [208] G. Ning, B. Haran, B.N. Popov, J. Power Sources, 117 (2003) 160-169.
    [209] F. Hoffart, in, Power Electronics, http://powerelectronics.com/mobile/proper-care-extends-li-ion-battery-life?page=2, 2008.
    [210] E. Barsoukov, Impedance Spectroscopy Theory, Experiment, and Applications, John Wiley & Sons, Inc., New Jersey, 2005.
    [211] Y.-H. Li, M.-L. Lee, F.-M. Wang, C.-R. Yang, P.P.J. Chu, S.-L. Yau, J.-P. Pan, Appl. Surf. Sci., 261 (2012) 306-311.
    [212] A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications, in: B.E. Conway, J. Bockris, R.E. White (Eds.) Modern Aspects of Electrochemistry, Kluwer Academic/Plenum, New York, 1999, pp. 143-248.
    [213] C.-P.S. Hsu, Handbook of instrumental techniques for analytical chemistry, in: F.A. Settle (Ed.) Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall PTR, New Jersey, 1997, pp. 247-285.
    [214] P. Larkin, Infared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier Inc., USA, 2011.
    [215] S.-B. Lee, S.-I. Pyun, J Solid State Electrochem, 7 (2003) 201-207.
    [216] J. Mistry, in, Missouri University of Science and Technology, http://coatings.mst.edu/v6i1/v6i3/.
    [217] Shimadzu, in, http://www.shimadzu.com/an/ftir/support/ftirtalk/talk1/intro.html.
    [218] V.I. Nefedov, V.I. Nefedov, X-Ray Photoelectron Spectroscopy of Solid Surfaces, Taylor & Francis, 1988.
    [219] P. van der Heide, X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices, Wiley, 2011.
    [220] J. Schweitzer, in, Purdue University, http://www.purdue.edu/rem/rs/sem.htm.
    [221] G. Yosef, A. Doron, The Electrochemical Window of Nonaqueous Electrolyte Solutions, in: Nonaqueous Electrochemistry, CRC Press, 1999.
    [222] Y. Wu, C. Jiang, C. Wan, E. Tsuchida, Electrochem. Commun., 2 (2000) 626-629.
    [223] T. Kawamura, S. Okada, J.-i. Yamaki, J. Power Sources, 156 (2006) 547-554.
    [224] D. Aurbach, M. Daroux, P. Faguy, E. Yeager, J. Electroanal. Chem. Interf. Electrochem., 297 (1991) 225-244.
    [225] Z. Peng, S.A. Freunberger, L.J. Hardwick, Y. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J.-M. Tarascon, P.G. Bruce, Angew. Chem. Int. Ed., 50 (2011) 6351-6355.
    [226] M. Arakawa, J.i. Yamaki, J. Power Sources, 54 (1995) 250-254.
    [227] A. Meitav, E. Peled, J. Electroanal. Chem. Interf. Electrochem., 134 (1982) 49-63.
    [228] F.-M. Wang, H.-M. Cheng, H.-C. Wu, S.-Y. Chu, C.-S. Cheng, C.-R. Yang, Electrochim. Acta, 54 (2009) 3344-3351.
    [229] S.A. Campbell, C. Bowes, R.S. McMillan, J. Electroanal. Chem. Interf. Electrochem., 284 (1990) 195-204.
    [230] D. Pletcher, J.F. Rohan, A.G. Ritchie, Electrochim. Acta, 39 (1994) 1369-1376.
    [231] D. Aurbach, H. Gottlieb, Electrochim. Acta, 34 (1989) 141-156.
    [232] S.-T. Myung, Y. Sasaki, T. Saito, Y.-K. Sun, H. Yashiro, Electrochim. Acta, 54 (2009) 5804-5812.
    [233] Y. Ikezawa, T. Ariga, Electrochim. Acta, 52 (2007) 2710-2715.
    [234] D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, J. Electrochem. Soc., 134 (1987) 1611-1620.
    [235] Y. Cheng, G. Wang, M. Yan, Z. Jiang, J Solid State Electrochem, 11 (2007) 310-316.
    [236] D. Aurbach, O. Chusid, J. Electrochem. Soc., 140 (1993) L155-L157.
    [237] S.I. Pyun, Fresenius J. Anal. Chem., 363 (1999) 38-45.
    [238] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, J. Power Sources, (2013).
    [239] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics, 148 (2002) 405-416.
    [240] G.V. Zhuang, H. Yang, B. Blizanac, J. Philip N. Ross, Electrochem. Solid-State Lett., 8 (2005) A441-A445.
    [241] D. Aurbach, A. Zaban, Y. Gofer, Y.E. Ely, I. Weissman, O. Chusid, O. Abramson, J. Power Sources, 54 (1995) 76-84.
    [242] E.L. Johnson, K.H. Pool, R.E. Hamm, Analytical Chemistry, 38 (1966) 183-185.
    [243] D.L. Maricle, W.G. Hodgson, Analytical Chemistry, 37 (1965) 1562-1565.
    [244] Y. Chen, S.A. Freunberger, Z. Peng, F. Barde, P.G. Bruce, Journal of the American Chemical Society, 134 (2012) 7952-7957.
    [245] M.E. Peover, B.S. White, Electrochimica Acta, 11 (1966) 1061-1067.
    [246] Y. Wang, P.B. Balbuena, J. Phys. Chem. B, 106 (2002) 4486-4495.
    [247] Y. Matsuda, T. Fukushima, H. Hashimoto, R. Arakawa, J. Electrochem. Soc., 149 (2002) A1045-A1048.
    [248] T. Fukushima, Y. Matsuda, H. Hashimoto, R. Arakawa, Electrochem. Solid-State Lett., 4 (2001) A127-A128.
    [249] T. Fukushima, Y. Matsuda, H. Hashimoto, R. Arakawa, J. Power Sources, 110 (2002) 34-37.
    [250] J. San Filippo, L.J. Romano, C.-I. Chern, J.S. Valentine, The Journal of Organic Chemistry, 41 (1976) 586-588.
    [251] V.S. Bryantsev, M. Blanco, The Journal of Physical Chemistry Letters, 2 (2011) 379-383.
    [252] S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carre, D. Lemordant, D. Gonbeau, Surf. Interface Anal., 37 (2005) 773-781.
    [253] A. Schechter, D. Aurbach, H. Cohen, Langmuir, 15 (1999) 3334-3342.
    [254] R. Dedryvere, H. Martinez, S. Leroy, D. Lemordant, F. Bonhomme, P. Biensan, D. Gonbeau, J. Power Sources, 174 (2007) 462-468.
    [255] A.M. Andersson, D.P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, J. Electrochem. Soc., 149 (2002) A1358-A1369.
    [256] M. Lu, H. Cheng, Y. Yang, Electrochim. Acta, 53 (2008) 3539-3546.
    [257] L.E. Ouatani, R. Dedryvere, C. Siret, P. Biensan, S. Reynaud, P. Iratcabal, D. Gonbeau, J. Electrochem. Soc., 156 (2009) A103-A113.
    [258] L. Yang, B.L. Lucht, Electrochem. Solid-State Lett., 12 (2009) A229-A231.
    [259] J.S. Gnanaraj, M.D. Levi, Y. Gofer, D. Aurbach, M. Schmidt, J. Electrochem. Soc., 150 (2003) A445-A454.
    [260] M. Moshkovich, Y. Gofer, D. Aurbach, J. Electrochem. Soc., 148 (2001) E155-E167.
    [261] A.J. Gmitter, J. Gural, G.G. Amatucci, J. Power Sources, 217 (2012) 21-28.
    [262] G.C. Chung, H.J. Kim, S.I. Yu, S.H. Jun, J.w. Choi, M.H. Kim, J. Electrochem. Soc., 147 (2000) 4391-4398.
    [263] F.-M. Wang, M.-H. Yu, Y.-J. Hsiao, Y. Tsai, B.-J. Hwang, Y.-Y. Wang, C.-C. Wan, Int. J. Electrochem. Sci., 6 (2011) 1014-1026.
    [264] J.Y. Kim, D.Y. Lim, Energies, 3 (2010) 866-885.
    [265] C.-S. Cheng, F.-M. Wang, J. Rick, Int. J. Electrochem. Sci., 7 (2012) 8676-8687.
    [266] R.C. Gaussian 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
    [267] C. Lee, W. Yang, R.G. Parr, Physical Review B, 37 (1988) 785-789.
    [268] A.D. Becke, J. Chem. Phys., 98 (1993) 5648.
    [269] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, The Journal of Physical Chemistry, 98 (1994) 11623-11627.
    [270] L.W. S. H. Vosko, M. Nusair, Canadian Journal of Physics, 58 (1980) 1200-1211.
    [271] A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B, 113 (2009) 6378-6396.
    [272] Q. Wang, H. Li, X. Huang, L. Chen, in: B.V.R. Chowdari, W. Wang (Eds.) Solid State Ionics: Materials and Devices, World Scientific Publishing Co. Pte. Ltd, Singapore, 2000, pp. 489-492.
    [273] J. Zhao, L. Wang, X. He, C. Wan, C. Jiang, Int. J. Electrochem. Sci., 5 (2010) 478-488.
    [274] J.-T. Lee, M.-S. Wu, F.-M. Wang, Y.-W. Lin, M.-Y. Bai, P.-C.J. Chiang, J. Electrochem. Soc., 152 (2005) A1837-A1843.
    [275] W.-S. Kim, D.-W. Park, H.-J. Jung, Y.-K. Choi, Bulletin of the Korean Chemical Society, 27 ( 2006) 82-86.
    [276] M. Bhatt, M. Cho, K. Cho, J Solid State Electrochem, 16 (2012) 435-441.
    [277] S.H. Kang, D.P. Abraham, A. Xiao, B.L. Lucht, J. Power Sources, 175 (2008) 526-532.
    [278] J.M. Vollmer, L.A. Curtiss, D.R. Vissers, K. Amine, J. Electrochem. Soc., 151 (2004) A178-A183.
    [279] Y. Wang, S. Nakamura, M. Ue, P.B. Balbuena, Journal of the American Chemical Society, 123 (2001) 11708-11718.
    [280] F. Joho, P. Novak, Electrochim. Acta, 45 (2000) 3589-3599.
    [281] R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds, John Wiley & Sons. Inc., 2005.
    [282] R. Mogi, M. Inaba, Y. Iriyama, T. Abe, Z. Ogumi, J. Power Sources, 119–121 (2003) 597-603.
    [283] S. Mori, H. Asahina, H. Suzuki, A. Yonei, K. Yokoto, J. Power Sources, 68 (1997) 59-64.
    [284] D. Aurbach, J. Power Sources, 119–121 (2003) 497-503.
    [285] S. Amalraj, D. Aurbach, J Solid State Electrochem, 15 (2011) 877-890.
    [286] J.Κ. Foley, S. Pons, Anal. Chem., 57 (1985) 945A-945A.
    [287] D.K. Roe, J.K. Sass, D.S. Bethune, A.C. Luntz, J. Electroanal. Chem. Interf. Electrochem., 216 (1987) 293-301.
    [288] M.E. Rosa-Montanez, H. De Jesus-Cardona, C.R. Cabrera-Martinez, Anal. Chem., 70 (1998) 1007-1011.
    [289] J. Zhang, J. Lu, C. Cha, Z. Feng, J. Electroanal. Chem. Interf. Electrochem., 265 (1989) 329-334.
    [290] K. Ashley, Talanta, 38 (1991) 1209-1218.
    [291] P. Christensen, A. Hamnett, Electrochim. Acta, 45 (2000) 2443-2459.
    [292] P.A. Mosier-Boss, R. Newbery, S. Szpak, S.H. Lieberman, J.W. Rovang, Anal. Chem., 68 (1996) 3277-3282.
    [293] T. Iwasita, F.C. Nart, Prog. Surf. Sci., 55 (1997) 271-340.
    [294] P. Novak, J.C. Panitz, F. Joho, M. Lanz, R. Imhof, M. Coluccia, J. Power Sources, 90 (2000) 52-58.
    [295] E. Goren, O. Chusid, D. Aurbach, J. Electrochem. Soc., 138 (1991) L6-L9.
    [296] P. Christensen, A. Hamnett, Electrochim. Acta, 45 (2000) 2443-2459.
    [297] H. Cheng, C.B. Zhu, M. Lu, Y. Yang, J. Power Sources, 174 (2007) 1027-1031.
    [298] H.J. Santner, C. Korepp, M. Winter, J.O. Besenhard, K.C. Moller, Anal. Bioanal. Chem., 379 (2004) 266-271.
    [299] E. Goren, O. Chusid , D. Aurbach, J. Electrochem. Soc., 138 (1991) L6-L9.
    [300] S.-I. Pyun, Y.-G. Ryu, J. Electroanal. Chem., 455 (1998) 11-17.
    [301] J. Ufheil, M.C. Baertsch, A. Wursig, P. Novak, Electrochim. Acta, 50 (2005) 1733-1738.
    [302] F.-M. Wang, M.-H. Yu, C.-S. Cheng, S.A. Pradanawati, S.-C. Lo, J. Rick, J. Power Sources, 231 (2013) 18-22.
    [303] P.H. Zoutendam, P.T. Kissinger, The Journal of Organic Chemistry, 44 (1979) 758-761.
    [304] R.G. Barradas, S. Fletcher, J.D. Porter, J. Electroanal. Chem. Interf. Electrochem., 75 (1977) 533-543.
    [305] C.-C. Chang, S.-H. Hsu, Y.-F. Jung, C.-H. Yang, J. Power Sources, 196 (2011) 9605-9611.
    [306] T. Woldbak, P. Klaboe, C.J. Nielsen, J. Mol. Struct., 27 (1975) 283-301.
    [307] G. Shen, M.F.G. Anand, R. Levicky, Nucleic Acids Res., 32 (2004) 5973-5980.
    [308] A. Ashok Kumar, M. Alagar, R.M.V.G.K. Rao, Polymer, 43 (2002) 693-702.
    [309] D. Aurbach, A. Zaban, J. Electroanal. Chem., 348 (1993) 155-179.
    [310] J. Zhao, L. Wang, X. He, C. Wan, C. Jiang, Int. J. Electrochem. Sci, 5 (2010) 478-488.
    [311] S.S. Zhang, K. Xu, T.R. Jow, Electrochem. Solid-State Lett., 5 (2002) A92-A94.
    [312] D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, J. Power Sources, 165 (2007) 491-499.
    [313] P. Yu, J.A. Ritter, R.E. White, B.N. Popov, J. Electrochem. Soc., 147 (2000) 2081-2085.

    QR CODE