簡易檢索 / 詳目顯示

研究生: Gul Jamil Shah
Gul Jamil Shah
論文名稱: 為積層製造設計之可變摩擦和非圓形接觸波形彈簧的機械性能之研究
Investigating the mechanical performance of variable frictional and non-circular contact wave springs designed for Additive Manufacturing
指導教授: 鄭正元
Jeng-Ywan Jeng
Muhammad Rizwan ul Haq
Muhammad Rizwan ul Haq
口試委員: 鄭正元
Jeng-Ywan Jeng
Muhammad Rizwan ul Haq
Muhammad Rizwan ul Haq
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 111
中文關鍵詞: 積層製造摩擦接觸波形彈簧非圓形波形彈簧滑動阻力線圈輪廓有限元分析能量吸收。
外文關鍵詞: Additive manufacturing, frictional contact, wave spring, non-circular wave spring, slippage resistance, profiles on coils, FEA, energy absorption
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造(AM),通常稱為3D列印,是一種快速發展的製造技術,由於其能夠製造複雜的幾何形狀且易於定制,因此正在迅速取代傳統製造。波形彈簧在航空航天、汽車、石油和天然氣以及生物醫學等各種行業中具有潛在用途,在這些行業中,研究人員/工程師對此類彈簧的機械性能很感興趣。線圈滑動是積層製造波形彈簧軸向壓縮過程中注意到的重要現象之一。
    本研究旨在研究波形彈簧線圈之間的可變摩擦接觸對能量吸收、剛度、承載能力和循環加載過程中的壓縮行為的影響。使用HP Multi Jet融合打印機設計和製造了九個具有不同輪廓的接觸波形彈簧,即正弦波、方形、凹面、凸面、V形和線圈表面的混合輪廓。隨著這項研究調查改變線圈形狀如何影響波形彈簧吸收能量的能力、剛度、承載能力以及加載-卸載期間的壓縮行為。設計了九種具有不同形狀線圈的接觸式波形彈簧,即方形、矩形、五角形、六角形、七角形、八角形、四角形、圓形(每個線圈4個波浪)和圓形(每個線圈6個波浪)。最多執行十個循環的壓縮測試,分析每個設計的機械性能和壓縮行為。正弦線圈顯示出最高的能量吸收,從第一個循環到第十個循環的能量損失最小,同時在本研究的所有設計中具有最低的剛度。
    結果表明,這些可變的虛構接觸提高了設計的穩定性,因為線圈的滑動阻力增加並對機械性能產生重大影響,使研究人員能夠根據可變尺寸的負載/剛度要求,為不同的應用設計波形彈簧。實驗結果與有限元分析(FEA)進行了比較,有限元分析是使用相同的實驗測試邊界條件進行的,並且在承載能力和壓縮行為方面顯示出最小的變化。


    Additive Manufacturing (AM), often known as 3D printing, is a fast-growing fabrication technology that is rapidly displacing traditional manufacturing due to its capacity to manufacture complex geometries with ease of customization. Wave springs have prospective uses in a variety of industries, including aerospace, automotive, oil and gas, and biomedical where researchers/engineers are interested in the mechanical properties of such springs. Slippage of coils is one of the significant phenomena that was noted during axial compression of additively manufactured wave springs. This study aims to investigate the effect of variable frictional contacts between the coils of wave spring on energy absorption, stiffness, load-bearing capacity, and compression behavior during loading- unloading. Nine contact wave springs with different profiles i.e., sine, square, concave, convex, V, and mixed profiles on the surface of coils were designed and fabricated using HP MultiJet fusion printer. Along with this research, it is investigated how changing the coil shape affects the wave spring's ability to absorb energy, its stiffness, its load-bearing capacity, and its compression behavior during loading-unloading. Nine contact type wave springs with various shapes of coils were designed i.e., square, rectangular, pentagonal, hexagonal, heptagonal, octagonal, quadro, circular (4 waves per coil), and circular (6 waves per coil). Compression testing was performed up to ten cycles to analyze the mechanical performance and compression behavior of each design. The sine profiled coils showed the highest energy absorption, with the minimum energy loss from the first to the tenth cycle while having the lowest stiffness among all the designs for this study. Furthermore, the results demonstrated that these variable fictional contacts improved the stability of the designs as the coil’s slippage resistance increased and has a significant impact on mechanical properties, allowing the researchers to design wave springs for different applications based on load/stiffness requirements having variable dimensions. Experimental results were compared with finite element analysis (FEA), which was performed using the identical boundary conditions of experimental testing and showed minimum variation in terms of load-bearing capacity and compression behavior.

    FRONT PAGE…i MASTER'S THESIS RECOMMENDATION FORM … ii QUALIFICATION FORM BY MASTER'S DEGREE EXAMINATION … iii DEDICATION … iv ACKNOWLEDGEMENT … v ABSTRACT … vi TABLE OF CONTENTS… viii LIST OF FIGURES … xi LIST OF TABLES … xv CHAPTER 1 INTRODUCTION …1 1.1 Introduction to Wave spring … 1 1.2 Problem Statement … 2 1.3 Objectives … 2 1.4 Thesis Organization … 2 CHAPTER 2 LITERATURE REVIEW … 4 2.1 Mechanical Springs … 4 2.1.1 Types of Springs … 5 2.2 Introduction to Wave springs… 8 2.3 Applications of wave springs … 12 2.4 Additive Manufacturing of Wave spring … 14 2.4.1 Limitation of traditional fabrication techniques … 15 2.4.2 Additive Manufacturing Processes...… 16 2.4.3 Process flow in additive manufacturing … 21 CHAPTER 3 DESIGNING OF WAVE SPRING …23 3.1 Variable frictional contacts wave springs … 23 3.1.1 Contact wave spring …. 23 3.1.2 Non-contact wave spring … 27 3.2 Non-circular contact wave springs … 27 CHAPTER 4 MATERIALS AND METHODS … 32 4.1 Material …. 32 4.2 Manufacturing of samples … 33 4.2.1 HP MJF 4200 ….. 33 4.2.2 Placement of parts in the Powder bed … 36 4.2.3 Post Processing … 37 4.3 Printed samples … 38 4.3.1 variable frictional contact wave springs … 38 4.3.2 Non-circular contact wave springs … 41 4.4 Experimental methods … 43 4.5 Simulation framework … 47 4.5.1 Material properties … 47 4.5.2 Geometry … 48 4.5.3 Material Assignment … 49 4.5.4 Contact Definition … 49 4.5.5 Mesh Generation … 50 4.5.6 Boundary Conditions… 51 4.5.7 FEA Results Calculation … 52 CHAPTER 5 RESULTS AND DISCUSSION … 53 5.1 Compression test (Loading-unloading) … 53 5.1.1 Variable frictional contact wave springs … 53 5.1.2 Non-circular contact wave springs … 58 5.2 Stiffness …. 62 5.2.1 Variable frictional contact wave springs … 62 5.2.2 Non-circular contact wave springs … 63 5.3 Energy absorption ….. 64 5.3.1 Variable frictional contact wave springs … 65 5.3.2 Non-circular contact wave springs … 66 5.4 Comparison of experimental and simulation results … 68 5.4.1 simulation of variable frictional contact wave springs… 68 5.4.2 Simulation of non-circular contact wave springs … 72 5.5 Significance of research … 76 5.6 Limitation of this study … 76 CHAPTER 6 CONCLUSION AND FUTURE WORK … 77 6.1 Conclusion … 77 6.2 Future work … 80 References … 81 APPENDIX A: Data and additional graphical interpretation … 91

    [1] M. R. ul Haq, A. Nazir, and J. Y. Jeng, “Design for additive manufacturing of variable dimension wave springs analyzed using experimental and finite element methods,” Addit. Manuf., vol. 44, p. 102032, Aug. 2021, doi: 10.1016/J.ADDMA.2021.102032.
    [2] M. R. ul Haq, A. Nazir, S. C. Lin, and J. Y. Jeng, “Parametric investigation of functionally gradient wave springs designed for additive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 119, no. 3–4, pp. 1673–1691, Mar. 2022, doi: 10.1007/S00170-021-08325-3/FIGURES/22.
    [3] F. Rossi, B. Castellani, and A. Nicolini, “Benefits and Challenges of Mechanical Spring Systems for Energy Storage Applications,” Energy Procedia, vol. 82, pp. 805–810, Dec. 2015, doi: 10.1016/J.EGYPRO.2015.11.816.
    [4] W. Duan, H. Feng, M. Liu, and Z. Wang, “Dynamic Analysis and Simulation of Flat Spiral Spring in Elastic Energy Storage Device,” undefined, 2012, doi: 10.1109/APPEEC.2012.6307140.
    [5] “What are Mechanical Springs and their types.” https://engineeringproductdesign.com/knowledge-base/springs/ (accessed Nov. 19, 2022).
    [6] P. R. N. Childs, “Springs,” Mech. Des. Eng. Handb., pp. 625–675, Jan. 2014, doi: 10.1016/B978-0-08-097759-1.00015-0.
    [7] “10 Types of Springs & Their Specific Design Uses - Worst Room.” https://worstroom.com/types-of-springs/ (accessed Nov. 19, 2022).
    [8] “Types of Springs | Most Common Spring Types | Xometry.” https://www.xometry.com/resources/blog/types-of-springs/ (accessed Nov. 19, 2022).
    [9] “Types of Springs - A Thomas Buying Guide.” https://www.thomasnet.com/articles/machinery-tools-supplies/types-of-springs/ (accessed May 11, 2022).
    [10] M. Seabra et al., “Selective laser melting (SLM) and topology optimization for lighter aerospace componentes,” Procedia Struct. Integr., vol. 1, pp. 289–296, Jan. 2016, doi:10.1016/J.PROSTR.2016.02.039.
    [11] M. Brandt, S. Sun, M. Leary, S. Feih, J. Elambasseril, and Q. Liu, “High-Value SLM Aerospace Components: From Design to Manufacture,” Adv. Mater. Res., vol. 633, pp. 135–147, 2013, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.633.135.
    [12] L. Zhang et al., “Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization,” J. Manuf. Process., vol. 56, pp. 1166–1177, Aug. 2020, doi: 10.1016/J.JMAPRO.2020.06.005.
    [13] J. Piekło, M. Małysza, and R. Dańko, “Modelling of the material destruction of vertically arranged honeycomb cellular structure,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1300–1308, Sep. 2018, doi: 10.1016/J.ACME.2018.03.007.
    [14] “Wave Spring vs. Coil Spring | Smalley.” https://www.smalley.com/blog/wave-spring-vs-coil-spring (accessed May 11, 2022).
    [15] “Retaining Rings, Spiral Rings, Constant Section Rings, Wave Springs.” https://www.rotorclip.com/ (accessed May 11, 2022).
    [16] “Custom Wave Spring Manufacturer | Teamco.” https://www.teamco.com.tw/en/product/wave-springs.html (accessed May 11, 2022).
    [17] “Wave spring - Wikipedia.” https://en.wikipedia.org/wiki/Wave_spring#cite_note-auto-4 (accessed Nov. 25, 2022).
    [18] Wave Springs- Advantages. .
    [19] “Smalley Wave Springs | Smalley.” https://www.smalley.com/wave-springs (accessed Nov. 25, 2022).
    [20] A. Ingrole, A. Hao, and R. Liang, “Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement,” Mater. Des., vol. 117, pp. 72–83, Mar. 2017, doi: 10.1016/J.MATDES.2016.12.067.
    [21] “Types of Springs and Their Uses - Grainger KnowHow.” https://www.grainger.com/know-how/equipment-information/kh-types-of-springs
    (accessed Jul. 13, 2022).
    [22] “Types of Springs and their Applications - SMLease Design.” https://www.smlease.com/entries/mechanism/types-of-springs-and-their-applications/ (accessed Jul. 13, 2022).
    [23] A. Nazir, M. Ali, C. H. Hsieh, and J. Y. Jeng, “Investigation of stiffness and energy absorption of variable dimension helical springs fabricated using multijet fusion technology,” Int. J. Adv. Manuf. Technol., vol. 110, no. 9–10, pp. 2591–2602, Oct. 2020, doi: 10.1007/S00170-020-06061-8.
    [24] M. Ali, A. Nazir, and J. Y. Jeng, “Mechanical performance of additive manufactured shoe midsole designed using variable-dimension helical springs,” Int. J. Adv. Manuf. Technol., vol. 111, no. 11–12, pp. 3273–3292, Dec. 2020, doi: 10.1007/S00170-020-06227-4.
    [25] A. Bin Arshad, A. Nazir, and J. Y. Jeng, “Design and performance evaluation of multi-helical springs fabricated by Multi Jet Fusion additive manufacturing technology,” Int. J. Adv. Manuf. Technol., vol. 118, no. 1–2, pp. 195–206, Jan. 2022, doi: 10.1007/S00170-021-07756-2.
    [26] D. Chemezov et al., “THE NONLINEAR DYNAMIC CALCULATION OF DEFORMED STATE OF VARIOUS TYPES OF SPRINGS.,” Theor. Appl. Sci., vol. 81, no. 01, pp. 1–6, Jan. 2020, doi: 10.15863/TAS.2020.01.81.1.
    [27] E. Dragoni, “A contribution to wave spring design:,” http://dx.doi.org/10.1243/03093247V233145, vol. 23, no. 3, pp. 145–153, Jul. 2007, doi: 10.1243/03093247V233145.
    [28] H. R. Erfanian-Naziftoosi, S. S. Shams, and R. Elhajjar, “Composite wave springs: Theory and design,” Mater. Des., vol. 95, pp. 48–53, Apr. 2016, doi: 10.1016/J.MATDES.2016.01.073.
    [29] P. N. L. Pavani, B. K. Prafulla, R. P. Rao, and S. Srikiran, “Design, Modeling and Structural Analysis of Wave Springs,” Procedia Mater. Sci., vol. 6, pp. 988–995, Jan. 2014, doi: 10.1016/J.MSPRO.2014.07.169.
    [30] H. C. Tekwani and D. D. Joshi, “Effect of Load variation and thickness on deflection andoperating stress of wave spring,” Int. J. Trend Sci. Res. Dev., vol. Volume-2, no. Issue-4, pp. 684–689, Jun. 2018, doi: 10.31142/IJTSRD13057.
    [31] M. Muralidharan, R. Aravinth, J. Gafferkhan, and R. Gandhi, “Comparative Design and Analysis of Helical and Wave Spring,” Int. J. Eng. Technol., vol. 7, no. 3.34, pp. 353–356, Sep. 2018, doi: 10.14419/IJET.V7I3.34.19224.
    [32] “Webpat.” https://webpat.tw/home/detail#/patent-info/?database=US&displayType=published&esId=us_20090292363_12470690&rowIndex=40&storageId=resultStorage_invention (accessed May 11, 2022).
    [33] “US20050126039A1 - Spring cushioned shoe - Google Patents.” https://patents.google.com/patent/US20050126039 (accessed May 11, 2022).
    [34] “US9039766B1 - Wave spring for a spinal implant - Google Patents.” https://patents.google.com/patent/US9039766B1/en?q=wave+springs (accessed May 11, 2022).
    [35] M. R. ul Haq, A. Nazir, S.-C. Lin, and J.-Y. Jeng, “Investigating the Effect of Design Parameters on the Mechanical Performance of Contact Wave Springs Designed for Additive Manufacturing,” https://home.liebertpub.com/3dp, May 2022, doi: 10.1089/3DP.2021.0313.
    [36] M. R. ul Haq, A. Nazir, S.-C. Lin, and J.-Y. Jeng, “Design and performance evaluation of multifunctional midsole using functionally gradient wave springs produced using multijet fusion additive manufacturing process,” Mater. Today Commun., vol. 31, p. 103505, Jun. 2022, doi: 10.1016/J.MTCOMM.2022.103505.
    [37] H. Yi, Z. Peng, K.-H. Lee, and L. Chul-Hee, “SCIENCE CHINA Friction and wear of textured surfaces produced by 3D printing,” Sci China Tech Sci, vol. 60, no. 9, pp. 1400–1406, 2017, doi: 10.1007/s11431-016-9066-0.
    [38] M. Sanguedolce, J. Zekonyte, M. Alfano, A. M. Camacho, and M. Gupta, “Wear of 17-4 PH Stainless Steel Patterned Surfaces Fabricated Using Selective Laser Melting,” 2021, doi: 10.3390/app11199317.
    [39] S. Rouf, A. Raina, M. Irfan Ul Haq, N. Naveed, S. Jeganmohan, and A. Farzana Kichloo,“3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications,” Adv. Ind. Eng. Polym. Res., Feb. 2022, doi: 10.1016/J.AIEPR.2022.02.001.
    [40] R. Aziz, M. I. Ul Haq, and A. Raina, “Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA),” Polym. Test., vol. 85, May 2020, doi: 10.1016/J.POLYMERTESTING.2020.106434.
    [41] A. N. Chaudhury and D. Datta, “Analysis of prismatic springs of non-circular coil shape and non-prismatic springs of circular coil shape by analytical and finite element methods,” J. Comput. Des. Eng., vol. 4, no. 3, pp. 178–191, Jul. 2017, doi: 10.1016/J.JCDE.2017.02.001.
    [42] “Applications for wave springs - Issuu.” https://issuu.com/wtwhmedia/docs/motion_system_applications_11-19/s/165909 (accessed Nov. 24, 2022).
    [43] E. H. Skorina and C. D. Onal, “Soft Hybrid Wave Spring Actuators,” Adv. Intell. Syst., vol. 2, no. 1, p. 1900097, Jan. 2020, doi: 10.1002/AISY.201900097.
    [44] “The benefits of wave springs for medical applications.” https://www.healthtechdigital.com/the-benefits-of-wave-springs-for-medical-applications/ (accessed Nov. 24, 2022).
    [45] “Wave Spring Application Examples | Smalley.” https://www.smalley.com/wave-springs/application-examples (accessed Nov. 24, 2022).
    [46] “US20090292363A1 - Intervertebral prosthesis - Google Patents.” https://patents.google.com/patent/US20090292363 (accessed Nov. 24, 2022).
    [47] “Running Shoes with a Spring...literally - Meet the Stinger XLT by Spira - Real Run Ryan.” https://realrunryan.com/2014/08/21/running-shoes-with-a-spring-literally-meet-the-stinger-xlt-by-spira/ (accessed Nov. 24, 2022).
    [48] L. M. Galantucci, F. Lavecchia, and G. Percoco, “Experimental study aiming to enhance the surface finish of fused deposition modeled parts,” CIRP Ann., vol. 58, no. 1, pp. 189–192, Jan. 2009, doi: 10.1016/J.CIRP.2009.03.071.
    [49] H. N. G. Wadley, N. A. Fleck, and A. G. Evans, “Fabrication and structural performance of periodic cellular metal sandwich structures,” Compos. Sci. Technol., vol. 63, no. 16, pp. 2331–2343, Dec. 2003, doi: 10.1016/S0266-3538(03)00266-5.
    [50] Q. Li, E. Y. Chen, D. R. Bice, and D. C. Dunand, “Mechanical Properties of Cast Ti-6Al-4V Lattice Block Structures,” Metall. Mater. Trans. A 2008 392, vol. 39, no. 2, pp. 441–449, Jan. 2008, doi: 10.1007/S11661-007-9440-Y.
    [51] J. ZHU, H. ZHOU, C. WANG, L. ZHOU, S. YUAN, and W. ZHANG, “A review of topology optimization for additive manufacturing: Status and challenges,” Chinese J. Aeronaut., vol. 34, no. 1, pp. 91–110, Jan. 2021, doi: 10.1016/J.CJA.2020.09.020.
    [52] “The science behind bottle openers by metal Additive Manufacturing.” https://www.metal-am.com/articles/the-science-behind-a-basic-consumer-product-bottle-openers-by-metal-3d-printing/ (accessed Nov. 26, 2022).
    [53] “3D Printing Satellite Parts with EOS Technology | EOS GmbH.” https://www.eos.info/en/all-3d-printing-applications/ruag-aerospace-3d-printed-satellite-components (accessed Nov. 26, 2022).
    [54] “ASTM F2792 - 12a Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015).” .
    [55] F. Calignano et al., “Overview on Additive Manufacturing Technologies,” undefined, vol. 105, no. 4, pp. 593–612, 2017, doi: 10.1109/JPROC.2016.2625098.
    [56] F. A, S.-H. M, A.-E. M, and A. O. NA, “Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering,” PLoS One, vol. 9, no. 9, Sep. 2014, doi: 10.1371/JOURNAL.PONE.0108252.
    [57] T. Do, P. Kwon, and C. S. Shin, “Process development toward full-density stainless steel parts with binder jetting printing,” Int. J. Mach. Tools Manuf., vol. 121, pp. 50–60, Oct. 2017, doi: 10.1016/J.IJMACHTOOLS.2017.04.006.
    [58] F. Calignano et al., “Overview on additive manufacturing technologies,” Proc. IEEE, vol. 105, no. 4, pp. 593–612, 2017, doi: 10.1109/JPROC.2016.2625098.
    [59] I. (Ian) Gibson, D. W. (David W. . Rosen, and B. (Brent) Stucker, “Additive manufacturing technologies : rapid prototyping to direct digital manufacturing,” p. 459, 2010.
    [60] A. Pugalendhi, R. Ranganathan, and S. Ganesan, “Impact of process parameters on mechanical behaviour in multi-material jetting,” Mater. Today Proc., vol. 46, pp. 9139–9144, Jan. 2021, doi: 10.1016/J.MATPR.2019.12.106.
    [61] N. Reis, K. A. M. Seerden, B. Derby, J. W. Halloran, and J. R. G. Evans, “Direct Inkjet Deposition of Ceramic Green Bodies: II – Jet Behaviour and Deposit Formation,” MRS Online Proc. Libr., vol. 542, pp. 147–152, 1998, doi: 10.1557/PROC-542-147.
    [62] A. Dass and A. Moridi, “State of the art in directed energy deposition: From additive manufacturing to materials design,” Coatings, vol. 9, no. 7, 2019, doi: 10.3390/COATINGS9070418.
    [63] T. Obikawa, M. Yoshino, and J. Shinozuka, “Sheet steel lamination for rapid manufacturing,” J. Mater. Process. Technol., vol. 89–90, pp. 171–176, May 1999, doi: 10.1016/S0924-0136(99)00027-8.
    [64] “Powder Bed Fusion | Additive Manufacturing Research Group | Loughborough University.” .
    [65] J. Shah, B. Snider, T. Clarke, S. Kozutsky, M. Lacki, and A. Hosseini, “Large-scale 3D printers for additive manufacturing: design considerations and challenges,” Int. J. Adv. Manuf. Technol. 2019 1049, vol. 104, no. 9, pp. 3679–3693, Jul. 2019, doi: 10.1007/S00170-019-04074-6.
    [66] M. Sireesha, J. Lee, A. S. Kranthi Kiran, V. J. Babu, B. B. T. Kee, and S. Ramakrishna, “A review on additive manufacturing and its way into the oil and gas industry,” RSC Adv., vol. 8, no. 40, pp. 22460–22468, 2018, doi: 10.1039/C8RA03194K.
    [67] L. A. Chavez et al., “The Influence of Printing Parameters, Post-Processing, and Testing Conditions on the Properties of Binder Jetting Additive Manufactured Functional Ceramics,” Ceram. 2020, Vol. 3, Pages 65-77, vol. 3, no. 1, pp. 65–77, Feb. 2020, doi: 10.3390/CERAMICS3010008.
    [68] “VAT Photopolymerisation | Additive Manufacturing Research Group | Loughborough University.” .
    [69] “The Complete Guide to Directed Energy Deposition (DED) in 3D Printing - 3Dnatives.” .
    [70] A. Nazir, K. M. Abate, A. Kumar, and J. Y. Jeng, “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures,” Int. J. Adv. Manuf. Technol. 2019 1049, vol. 104, no. 9, pp. 3489–3510, Jul. 2019, doi: 10.1007/S00170-019-04085-3.
    [71] “4 common types of 3D printer file formats and when to use it.” https://www.cmac.com.au/blog/4-common-types-3d-printer-file-formats-when-to-use (accessed Nov. 20, 2022).
    [72] “3D Printing File Formats: Everything you need to Know.” https://additive-x.com/blog/file-formats-used-3d-printing/ (accessed Nov. 20, 2022).
    [73] “SOLIDWORKS.” https://www.solidworks.com/ (accessed Apr. 12, 2022).
    [74] “HP Multi Jet Fusion 3D Printing Technology - Powder 3D Printer | HP® Official Site.” https://www.hp.com/us-en/printers/3d-printers/products/multi-jet-technology.html#modal=popup_multi_jet_technology (accessed May 07, 2022).
    [75] A. Nazir and J. Y. Jeng, “Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation,” Mater. Des., vol. 186, p. 108349, Jan. 2020, doi: 10.1016/J.MATDES.2019.108349.
    [76] “Introduction the characteristics and application of Nylon 12 (Polyamide 12 / PA 12) material | Over 40 Years of World-Class Wire & Cable Management Products Manufacturing | HUA WEI.” https://www.hwlok.com/en/technical-info/Material-PA12.html (accessed Jul. 27, 2022).
    [77] A. Nazir, A. Bin Arshad, and J. Y. Jeng, “Buckling and post-buckling behavior of uniform and variable-density lattice columns fabricated using additive manufacturing,” Materials (Basel)., vol. 12, no. 21, Nov. 2019, doi: 10.3390/MA12213539.
    [78] S. Rosso, R. Meneghello, L. Biasetto, L. Grigolato, G. Concheri, and G. Savio, “In-depth
    comparison of polyamide 12 parts manufactured by Multi Jet Fusion and Selective Laser Sintering,” Addit. Manuf., vol. 36, p. 101713, Dec. 2020, doi: 10.1016/J.ADDMA.2020.101713.
    [79] F. N. Habib, P. Iovenitti, S. H. Masood, and M. Nikzad, “Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology,” Mater. Des., vol. 155, pp. 86–98, Oct. 2018, doi: 10.1016/J.MATDES.2018.05.059.
    [80] “Your Comprehensive Guide to the HP Multi Jet Fusion 3D Printer.” .
    [81] “HP Multi Jet Fusion Handbook Best practices Design for HP MJF: Design guidelines HP MJF Handbook.”
    [82] A. Alomarah, D. Ruan, S. Masood, and Z. Gao, “Compressive properties of a novel additively manufactured 3D auxetic structure,” Smart Mater. Struct., vol. 28, no. 8, Jul. 2019, doi: 10.1088/1361-665X/AB0DD6.
    [83] C. Cai et al., “Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion,” J. Mater. Process. Technol., vol. 288, p. 116882, Feb. 2021, doi: 10.1016/J.JMATPROTEC.2020.116882.
    [84] “Materials Test Systems.” https://www.mts.com/en/products/materials (accessed May 07, 2022).
    [85] P. C. Sun, H. W. Wei, C. H. Chen, C. H. Wu, H. C. Kao, and C. K. Cheng, “Effects of varying material properties on the load deformation characteristics of heel cushions,” Med. Eng. Phys., vol. 30, no. 6, pp. 687–692, Jul. 2008, doi: 10.1016/J.MEDENGPHY.2007.07.010.
    [86] “TestWorks 4.0 Software; MTS Systems Corporation: Eden Prairie, MN, USA, 2004.” - Google Search.” https://www.google.com/search?q=TestWorks+4.0+Software%3B+MTS+Systems+Corporation%3A+Eden+Prairie%2C+MN%2C+USA%2C+2004.”&oq=TestWorks+4.0+Software%3B+MTS+Systems+Corporation%3A+Eden+Prairie%2C+MN%2C+USA%2C+2004.”&aqs=chrome..69i57.1222j0j7&sourceid=chrome&ie=UTF-8 (accessed May 07, 2022).
    [87] “Ansys | Engineering Simulation Software.” https://www.ansys.com/ (accessed May 07,2022).
    [88] J. Bai, J. Song, and J. Wei, “Tribological and mechanical properties of MoS2 enhanced polyamide 12 for selective laser sintering,” J. Mater. Process. Technol., vol. 264, pp. 382–388, Feb. 2019, doi: 10.1016/J.JMATPROTEC.2018.09.026.
    [89] K. P. M. Lee, C. Pandelidi, and M. Kajtaz, “Build orientation effects on mechanical properties and porosity of polyamide-11 fabricated via multi jet fusion,” Addit. Manuf., vol. 36, p. 101533, Dec. 2020, doi: 10.1016/J.ADDMA.2020.101533.
    [90] Q. Sui, H. Fan, and C. Lai, “Failure analysis of 1D lattice truss composite structure in uniaxial compression,” Compos. Sci. Technol., vol. 118, pp. 207–216, Oct. 2015, doi: 10.1016/J.COMPSCITECH.2015.09.003.
    [91] C. A. Schenk and G. I. Schuëller, “Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 35–36, pp. 3424–3434, Jul. 2007, doi: 10.1016/J.CMA.2007.03.014.
    [92] “(8) (PDF) BUCKLING DESIGN OF IMPERFECT SPHERICAL SHELLS.” https://www.researchgate.net/publication/267268728_BUCKLING_DESIGN_OF_IMPERFECT_SPHERICAL_SHELLS (accessed May 10, 2022).

    無法下載圖示 全文公開日期 2026/01/03 (校內網路)
    全文公開日期 2026/01/03 (校外網路)
    全文公開日期 2026/01/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE