簡易檢索 / 詳目顯示

研究生: Fekadu Tadesse Bekena
Fekadu Tadesse Bekena
論文名稱: Removal of Organic Contaminants from Wastewater by Photocatalysis Using Oxy-sulfide and Metal Oxide Based Photocatalysts
Removal of Organic Contaminants from Wastewater by Photocatalysis Using Oxy-sulfide and Metal Oxide Based Photocatalysts
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭東昊
Dong-Hau Kuo
薛人愷
Ren-Kae Shiue
林耀東
Yao-Tung Lin
柯文政
Wen-Cheng Ke
陳詩芸
Shih-Yun Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 153
中文關鍵詞: 光觸媒降解還原4-硝基苯酚染料摻雜
外文關鍵詞: Photocatalyst, degradation, reduction, 4-nitrophenol, dyes, doping
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於城市化和工業化的迅速發展,水污染已成為全世界的嚴重問題。不同行業所釋放的廢水中含有有毒且無法降解的有機污染物,例如染料,酚和相關的衍生物。因此,將工業廢水排放到環境中之前必須對其進行處理。光催化技術具有操作簡便,環境安全,節能高效等優點,是近年來在環境修復方面具有廣闊前景的技術。在這項研究中,使用光催化法來去除廢水中有的機污染物。
首先,在90 °C的溫度下使用化學沉澱法合成了新型的Mg-Zn(O,S)奈米顆粒,並對其進行了不同的表面特徵分析。在乙醇、Na2SO3、EDTA和甲酸中使用Mg-Zn(O,S)奈米顆粒可提高4-硝基苯酚的光催化還原效率。其中,在Na2SO3中並通過紫外光照射下,Mg-Zn(O,S)-2.5對4-硝基苯酚的光催化還原比純Zn(O,S) 具有更高的光催化還原效率。在45分鐘內,96.7 %的4-硝基苯酚離子被還原為4-氨基苯酚。同時測試了Mg-Zn(O,S)-2.5的析氫性能,其中不含4-NP的樣品的析出速率為1035 μmol/ g,加入4-NP的樣品的析出速率為705 μmol/ g。為了理解涉及電子和空穴的動力學,提出了可能的反應機理。
在第二步驟中,通過在室溫下的化學沉澱法並進行煅燒製備出環保,化學惰性且具有成本效益的10 nm MgO/TiO2納米複合材料。並以不同的技術來分析其光學性質。本步驟使用可見光代替紫外線輻射測試了MgO/TiO2光催化劑對亞甲基藍(MB)染料的降解。以30 wt%的Mg前驅物製備的MgO/TiO2-30在120分鐘內達到了99.7 %的光降解效率,並研究煅燒溫度對催化劑催化活性的影響。MgO/TiO2-30的速率常數是P25-TiO2的4倍。由於將MgO摻入10 nm尺寸的TiO2中形成MgO/TiO2界面,因此MgO/TiO2具有出色的光催化活性。本研究提出了化學計量/非化學計量的氧化物界面以更好地進行電荷傳輸的概念。
在第三步驟中,通過一種簡便的方法製備了通用,高效且新穎的Bi2(O,S)3 / Mo(O,S)2奈米複合光催化劑,並分析其結構,形貌,組成和光學性質。通過不同種類染料的光降解評價了催化劑的光催化性能,結果顯示20 % Bi-MoOS納米複合材料對所有染料均具有優異的光降解活性。分別在180分鐘,40分鐘,20分鐘和25分鐘的可見光照射後去除了96.0 %的MO,96.6 %的RhB,98.8 %的MB和91.3 %的NR染料。奈米複合材料的出色的光催化活性是由於二元異質結構誘導的光生電荷載體的有效分離和傳輸。活性物種捕獲實驗研究顯示˙OH、O_2^(.-)和h+皆參與了染料降解的反應。


Due to the rapid growth of urbanization and industrialization water contamination is become a serious problem all over the world. Wastewater released from different industries contains toxic and non-biodegradable organic pollutants such as dyes, phenols, and their derivatives. Therefore, industrial effluent contains these organic pollutants that have to be treated before discharge to the environment. Photocatalysis is the recent technology with broad application prospects for environmental remediation due to its advantages of simple operation, environmental safety, energy-saving, and high efficiency. In this research work, the removal of organic contaminants from wastewater has been investigated using the photocatalytic method.
In the first work, novel Mg-doped Zn(O,S) nanoparticles were synthesized by a chemical precipitation process at 90 ℃ and the as-prepared nanoparticles were characterized by different techniques. The effective hole scavenger that improves the photocatalytic reduction of 4-nitrophenol using Mg-doped Zn(O,S) nanoparticle was selected from ethanol, Na2SO3, EDTA, and formic acid. The photocatalytic reduction for the 4-nitrophenol using Na2SO3 under UV light irradiation showed that Mg–Zn(O,S)-2.5 exhibited higher activity compared with pure Zn(O,S). 96.7% of 4-nitrophenolate ion reduced into 4-aminophenol within 45 min. Mg–Zn(O,S)-2.5 was also tested for hydrogen evolution, where the rates of 1035 μmol/g for the 4-NP-free sample and 705 μmol/g for the 4-NP-added one were achieved. The possible reaction mechanism was proposed to understand the kinetics involving electrons and holes.
In the second work, environmentally friendly, chemically inert, and cost-effective 10 nm-sized MgO/TiO2 nanocomposites were prepared by a chemical precipitation method at room temperature and followed by calcination. The structural and optical properties of photocatalyst were characterized by different techniques. The MgO/TiO2 photocatalysts were tested for the degradation of methylene blue (MB) dye using visible light instead of UV irradiation. The highest photodegradation efficiency of 99.7% was achieved by MgO/TiO2-30 with a 30wt% Mg precursor within 120 min. The effect of calcination temperature on the catalytic activity of the catalyst was also investigated. The rate constant of MgO/TiO2-30 was 4 times greater than that of pure P25-TiO2. The excellent photocatalytic activity of MgO/TiO2 arises because of the incorporation of MgO to the 10 nm-sized TiO2 to form the MgO/TiO2 interface. A concept of the stoichiometric/nonstoichiometric oxide interface for better charge transport is proposed.
In the third work, universal, highly efficient, and novel Bi2(O,S)3/Mo(O,S)2 nanocomposite photocatalyst was fabricated by a facile method and the crystal structure, morphology, composition, and optical properties of the as-prepared catalysts were characterized in details. The photocatalytic performance of the catalysts was evaluated by the photodegradation of different kinds of dyes, the results showed that 20% Bi-MoOS nanocomposite had excellent photodegradation activity towards all dyes. 96.0% of MO, 96.6% of RhB, 98.8% of MB and 91.3% of NR dyes were removed after 180 min, 40 min, 20 min, and 25 min visible light irradiation, respectively. The excellent photocatalytic activity of the nanocomposites was due to the efficient separation and transport of photogenerated charge carriers induced by the fabricated binary heterostructures. The active species capture experiment study showed that,˙OH, O_2^(.-) and h+ all took parts in the degradation of dyes.

Abstract iii Acknowledgment v List of figures viii List of tables xiii CHAPTER ONE 1 1. Introduction 1 1.1. Organic pollutants 1 1.2. Photocatalytic wastewater treatment Methods 4 1.2.1. Photocatalytic reduction of organic pollutants 5 1.2.2. Photocatalytic oxidation of organic pollutants 5 1.3. Roles of hole scavengers 6 1.4. Doping 7 1.5. Construction of heterojunction 8 1.6. Motivation of the Study 8 1.7. Objective of the research 9 1.7.1. General Objective 9 1.7.2. Specific Objectives 9 CHAPTER TWO 11 2. Literature review 11 2.1. Photocatalysis 11 2.2. Metal oxide based photocatalyst 12 2.3. Metal sulfide photocatalyst 21 2.4. Metal oxy-sulfide photocatalyst 23 CHAPTER THREE 30 3. Experimental detail 30 3.1. Chemicals 30 3.2. Catalyst synthesis 30 3.2.1. Synthesis of Mg-Zn(O,S) nanoparticles 30 3.2.2. Synthesis of MgO/TiO2 nanocomposites 30 3.2.3. Synthesis of Bi2(O,S)3/Mo(O,S)2 nanocomposites 32 3.3. Characterizations of catalysts 32 3.3.1. X-ray Diffractometer 32 3.3.2. Field emission scanning electron microscopy (FE-SEM) 33 3.3.3. Transmission electron microscopy (TEM) 34 3.3.4. X-ray photoelectron spectroscopy (XPS) 35 3.3.5. UV-Vis spectroscopy analysis 36 3.3.6. Other characterization 37 3.4. Photocatalytic activity 37 CHAPTER FOUR 41 4. Results and Discussion 41 4.1. Photocatalytic Reduction of 4-nitrophenol Using Effective Hole Scavenger Over Novel Mg-doped Zn(O,S) Nanoparticles 41 4.1.1. Introduction 41 4.1.2. Material characterization 42 4.1.3. Photocatalytic activity 51 4.1.4. Summary 61 4.2. 10 nm sized visible light TiO2 photocatalyst in the presence of MgO for degradation of methylene blue 62 4.2.1. Introduction 62 4.2.2. Material characterization 63 4.2.3. Photocatalytic activity 73 4.2.4. Summary 84 4.3. Universal and Highly Efficient Degradation Performance of Novel Bi2(O,S)3/Mo(O,S)2 Nanocomposite Photocatalyst Under Visible Light 86 4.3.1. Introduction 86 4.3.2. Material characterization 87 4.3.3. Photocatalytic activity 98 4.3.4. Summary 108 CHAPTER FIVE 110 5. Final Conclusion and Outlook 110 5.1. Final conclusion 110 5.2. Outlook 112 References 114

[1] J.C. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M. Silva, A review on environmental monitoring of water organic pollutants identified by EU guidelines, Journal of hazardous materials, 344 (2018) 146-162.
[2] L. Chen, H. Xu, J. Xie, X. Liu, Y. Yuan, P. Liu, Z. Qu, N. Yan, [SnS4] 4-clusters modified MgAl-LDH composites for mercury ions removal from acid wastewater, Environmental Pollution, 247 (2019) 146-154.
[3] S. Palmate, A. Pandey, D. Kumar, R. Pandey, S. Mishra, Climate change impact on forest cover and vegetation in Betwa Basin, India, Applied Water Science, 7 (2017) 103-114.
[4] N.W. Arnell, Climate change and global water resources, Global environmental change, 9 (1999) S31-S49.
[5] A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Liquid Phase Adsorption of Rhodamine B Dye onto Acid-treated Raphia hookeri Fruit Epicarp: Isotherms, Kinetics and Thermodynamics Studies, South African Journal of Chemistry, 69 (2016) 218-226.
[6] C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energy & Environmental Science, 7 (2014) 2831-2867.
[7] L.C. Castillo-Carvajal, J.L. Sanz-Martín, B.E. Barragán-Huerta, Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review, Environmental Science and Pollution Research, 21 (2014) 9578-9588.
[8] A. Hernandez-Gordillo, A.G. Romero, F. Tzompantzi, R. Gómez, Kinetic study of the 4-nitrophenol photooxidation and photoreduction reactions using CdS, Applied Catalysis B: Environmental, 144 (2014) 507-513.
[9] W. Zhang, F. Tan, W. Wang, X. Qiu, X. Qiao, J. Chen, Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol, Journal of Hazardous materials, 217 (2012) 36-42.
[10] V. Uberoi, S.K. Bhattacharya, Toxicity and degradability of nitrophenols in anaerobic systems, Water Environment Research, 69 (1997) 146-156.
[11] C. Rajkumar, P. Veerakumar, S.-M. Chen, B. Thirumalraj, K.-C. Lin, Ultrathin Sulfur-Doped Graphitic Carbon Nitride Nanosheets As Metal-Free Catalyst for Electrochemical Sensing and Catalytic Removal of 4-Nitrophenol, ACS Sustainable Chemistry & Engineering, 6 (2018) 16021-16031.
[12] Z. Wu, X. Yuan, H. Zhong, H. Wang, G. Zeng, X. Chen, H. Wang, J. Shao, Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite, Scientific reports, 6 (2016) 25638.
[13] A. Hernández-Gordillo, V.R. González, Silver nanoparticles loaded on Cu-doped TiO2 for the effective reduction of nitro-aromatic contaminants, Chemical Engineering Journal, 261 (2015) 53-59.
[14] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, The Journal of physical chemistry A, 115 (2011) 13211-13241.
[15] H.K. Kadam, S.G. Tilve, Advancement in methodologies for reduction of nitroarenes, RSC Advances, 5 (2015) 83391-83407.
[16] K.-y. Cai, Y.-S. Liu, Y. Xu, H. Zhou, L. Zhang, Y. Cui, One-pot synthesis of Bi/Fe3O4 and its catalytic performances for 4-nitrophenol reduction, Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2017) 89-95.
[17] K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism, The Journal of Physical Chemistry A, 113 (2009) 10024-10032.
[18] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource technology, 77 (2001) 247-255.
[19] G. Ramesha, A.V. Kumara, H. Muralidhara, S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, Journal of colloid and interface science, 361 (2011) 270-277.
[20] G. Mishra, M. Tripathy, A critical review of the treatments for decolourization of textile effluent, Colourage, 40 (1993) 35-35.
[21] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, Rsc Advances, 4 (2014) 37003-37026.
[22] S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, Synthesis of novel pnp BiOBr/ZnO/BiOI heterostructures and their efficient photocatalytic performances in removals of dye pollutants under visible light, Journal of Photochemistry and Photobiology A: Chemistry, 389 (2020) 112247.
[23] S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination, 252 (2010) 149-156.
[24] N. Daneshvar, D. Salari, A. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of photochemistry and photobiology A: chemistry, 162 (2004) 317-322.
[25] S. Zhu, D. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities, Advanced Energy Materials, 7 (2017) 1700841.
[26] K. Byrappa, A. Subramani, S. Ananda, K.L. Rai, R. Dinesh, M. Yoshimura, Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO, Bulletin of Materials Science, 29 (2006) 433-438.
[27] A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Photocatalytic CO2 reduction by TiO2 and related titanium containing solids, Energy & Environmental Science, 5 (2012) 9217-9233.
[28] T. Pradeep, Noble metal nanoparticles for water purification: a critical review, Thin solid films, 517 (2009) 6441-6478.
[29] W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion, Physical Chemistry Chemical Physics, 15 (2013) 2632-2649.
[30] L. Liu, Y. Li, Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review, Aerosol Air Qual Res, 14 (2014) 453-469.
[31] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical reviews, 95 (1995) 69-96.
[32] R.P. Suri, J. Liu, D.W. Hand, J.C. Crittenden, D.L. Perram, M.E. Mullins, Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water, Water Environment Research, 65 (1993) 665-673.
[33] A. Hernández-Gordillo, A.G. Romero, F. Tzompantzi, S. Oros-Ruiz, R. Gómez, Visible light photocatalytic reduction of 4-Nitrophenol using CdS in the presence of Na2SO3, Journal of Photochemistry and Photobiology A: Chemistry, 257 (2013) 44-49.
[34] M. Ni, M.K. Leung, D.Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews, 11 (2007) 401-425.
[35] A. Hernández-Gordillo, P. Acevedo-Peña, M. Bizarro, S.E. Rodil, R. Gómez, Photoreduction of 4-Nitrophenol in the presence of carboxylic acid using CdS nanofibers, Journal of Materials Science: Materials in Electronics, 29 (2018) 7345-7355.
[36] N.P. Gonçalves, M.C. Paganini, P. Armillotta, E. Cerrato, P. Calza, The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation, Journal of Environmental Chemical Engineering, 7 (2019) 103475.
[37] M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Application of doped photocatalysts for organic pollutant degradation-A review, Journal of environmental management, 198 (2017) 78-94.
[38] H. Wang, X. Zhang, Y. Xie, Recent progress in ultrathin two-dimensional semiconductors for photocatalysis, Materials Science and Engineering: R: Reports, 130 (2018) 1-39.
[39] W. Shao, H. Wang, X. Zhang, Elemental doping for optimizing photocatalysis in semiconductors, Dalton Transactions, 47 (2018) 12642-12646.
[40] J. Ge, Y. Zhang, Y.-J. Heo, S.-J. Park, Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review, Catalysts, 9 (2019) 122.
[41] Z. Lin, J. Lin, L. Huang, X. Zhang, Y. Wang, Z. Zhang, H. Lin, X. Wang, In situ construction of a heterojunction over the surface of a sandwich structure semiconductor for highly efficient photocatalytic H2 evolution under visible light irradiation, Nanoscale, 9 (2017) 14423-14430.
[42] L. Zhang, M. Jaroniec, Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications, Applied Surface Science, 430 (2018) 2-17.
[43] P. Chen, H. Wang, H. Liu, Z. Ni, J. Li, Y. Zhou, F. Dong, Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La, Applied Catalysis B: Environmental, 242 (2019) 19-30.
[44] D. Robert, S. Malato, Solar photocatalysis: a clean process for water detoxification, Science of the Total Environment, 291 (2002) 85-97.
[45] S. Sarina, E.R. Waclawik, H. Zhu, Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation, Green Chemistry, 15 (2013) 1814-1833.
[46] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chemical Society Reviews, 43 (2014) 5234-5244.
[47] Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chemical reviews, 117 (2017) 11302-11336.
[48] K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Industrial & engineering chemistry research, 43 (2004) 7683-7696.
[49] A.B. Lavand, Y.S. Malghe, Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres, Journal of Asian Ceramic Societies, 3 (2015) 305-310.
[50] K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, Journal of photochemistry and photobiology C: Photochemistry Reviews, 13 (2012) 169-189.
[51] Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges, Advanced Materials, 31 (2019) 1901997.
[52] F. Peng, H. Wang, H. Yu, S. Chen, Preparation of aluminum foil-supported nano-sized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation, Materials Research Bulletin, 41 (2006) 2123-2129.
[53] P.K. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, V. Ponnusami, Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation, Arabian Journal of Chemistry, 9 (2016) S1618-S1626.
[54] P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, J. Wudtipan, K. Srijan, S. Kaewtaro, Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer, Powder Technology, 212 (2011) 432-438.
[55] J.R. Ugal, K.H. Hassan, I.H. Ali, Preparation of type 4A zeolite from Iraqi kaolin: Characterization and properties measurements, Journal of the Association of Arab Universities for Basic and Applied Sciences, 9 (2010) 2-5.
[56] G. Shen, J.H. Cho, J.K. Yoo, G.-C. Yi, C.J. Lee, Synthesis and Optical Properties of S-Doped ZnO Nanostructures:  Nanonails and Nanowires, The Journal of Physical Chemistry B, 109 (2005) 5491-5496.
[57] M. Bordbar, N. Negahdar, M. Nasrollahzadeh, Melissa Officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B, Separation and Purification Technology, 191 (2018) 295-300.
[58] G. Ravi, M. Sarasija, D. Ayodhya, L.S. Kumari, D. Ashok, Facile synthesis, characterization and enhanced catalytic reduction of 4-nitrophenol using NaBH4 by undoped and Sm3+, Gd 3+, Hf 3+ doped La2O3 nanoparticles, Nano convergence, 6 (2019) 12.
[59] K. Vijai Anand, J. Aravind Kumar, K. Keerthana, P. Deb, S. Tamilselvan, J. Theerthagiri, V. Rajeswari, S.M.S. Sekaran, K. Govindaraju, Photocatalytic Degradation of Rhodamine B Dye Using Biogenic Hybrid ZnO‐MgO Nanocomposites under Visible Light, ChemistrySelect, 4 (2019) 5178-5184.
[60] C. Chen, J. Liu, P. Liu, B. Yu, Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO catalysts, Advances in Chemical Engineering and Science, 1 (2011) 9.
[61] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface science reports, 63 (2008) 515-582.
[62] T.N. Ravishankar, M. de Oliveira Vaz, S.R. Teixeira, The effect of surfactant on sol-gel synthesis of CuO/TiO2 nanocomposites for the photocatalytic activities under UV-Visible and Visible Light illuminations, New Journal of Chemistry, 44 (2020) 1888-1904.
[63] X. Xiang, L. Xie, Z. Li, F. Li, Ternary MgO/ZnO/In2O3 heterostructured photocatalysts derived from a layered precursor and visible-light-induced photocatalytic activity, Chemical Engineering Journal, 221 (2013) 222-229.
[64] J. Ahmad, K. Majid, Enhanced visible light driven photocatalytic activity of CdO-graphene oxide heterostructures for the degradation of organic pollutants, New Journal of Chemistry, 42 (2018) 3246-3259.
[65] S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chemical Society Reviews, 48 (2019) 4178-4280.
[66] H. Hao, X. Lang, Metal Sulfide Photocatalysis: Visible‐Light‐Induced Organic Transformations, ChemCatChem, 11 (2019) 1378-1393.
[67] W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, A. Inoue, Nanoporous CuS with excellent photocatalytic property, Scientific reports, 5 (2015) 18125.
[68] M. Abbasi, U. Rafique, G. Murtaza, M.A. Ashraf, Synthesis, characterisation and photocatalytic performance of ZnS coupled Ag2S nanoparticles: A remediation model for environmental pollutants, Arabian journal of chemistry, 11 (2018) 827-837.
[69] W. Yang, X. Liu, D. Li, L. Fan, Y. Li, Aggregation-induced preparation of ultrastable zinc sulfide colloidal nanospheres and their photocatalytic degradation of multiple organic dyes, Physical Chemistry Chemical Physics, 17 (2015) 14532-14541.
[70] Q. Wang, M. Nakabayashi, T. Hisatomi, S. Sun, S. Akiyama, Z. Wang, Z. Pan, X. Xiao, T. Watanabe, T. Yamada, Oxysulfide photocatalyst for visible-light-driven overall water splitting, Nature materials, 18 (2019) 827.
[71] T. Suzuki, T. Hisatomi, K. Teramura, Y. Shimodaira, H. Kobayashi, K. Domen, A titanium-based oxysulfide photocatalyst: La5Ti2MS5O7 (M= Ag, Cu) for water reduction and oxidation, Physical Chemistry Chemical Physics, 14 (2012) 15475-15481.
[72] H. Abdullah, N.S. Gultom, D.-H. Kuo, Synthesis and characterization of La-doped Zn (O, S) photocatalyst for green chemical detoxification of 4-nitrophenol, Journal of hazardous materials, 363 (2019) 109-118.
[73] M.A. Zeleke, D.-H. Kuo, K.E. Ahmed, N.S. Gultom, Facile synthesis of bimetallic (In, Ga)2 (O, S)3 oxy-sulfide nanoflower and its enhanced photocatalytic activity for reduction of Cr (VI), Journal of colloid and interface science, 530 (2018) 567-578.
[74] D. Mao, L. Zhu, X. Fei, X. Zheng, D. Fang, Fabrication of indium sulfide/graphene oxide photodegradation of rhodamine B-containing wastewater under visible light irradiation, Materials Research Express, 5 (2018) 065906.
[75] K.E. Ahmed, D.-H. Kuo, W.L. Kebede, In-situ synthesis and characterizations of Bi2(O, S) 3/Zn(O, S) composites for visible light hexavalent chromium reduction, Advanced Powder Technology, 30 (2019) 1664-1671.
[76] W.L. Kebede, D.-H. Kuo, M.A. Zeleke, K.E. Ahmed, A novel Sb-doped Mo (O, S)3 oxy-sulfide photocatalyst for degradation of methylene blue dye under visible light irradiation, Journal of Alloys and Compounds, 797 (2019) 986-994.
[77] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤ 650 nm), Journal of the American Chemical Society, 124 (2002) 13547-13553.
[78] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Critical reviews in analytical chemistry, 45 (2015) 289-299.
[79] K. Akhtar, S.A. Khan, S.B. Khan, A.M. Asiri, Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, Handbook of Materials Characterization, Springer 2018, pp. 113-145.
[80] B. Kwiecińska, S. Pusz, B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter, International Journal of Coal Geology, 211 (2019) 103203.
[81] J.B. Gilbert, M.F. Rubner, R.E. Cohen, Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers, Proceedings of the National Academy of Sciences, 110 (2013) 6651-6656.
[82] V. Jayaraman, A. Mani, Optical, photocatalytic properties of novel pyro-stannate A2Sn2O7 (A= Ce, Ca, Sr), and Pt deposited (SrCe)2Sn2O7 for the removal of organic pollutants under direct solar light irradiation, Materials Science in Semiconductor Processing, 104 (2019) 104647.
[83] H.A. Oualid, O. Amadine, Y. Essamlali, I.M. Kadmiri, H. El Arroussi, M. Zahouily, Highly efficient catalytic/sonocatalytic reduction of 4-nitrophenol and antibacterial activity through a bifunctional Ag/ZnO nanohybrid material prepared via a sodium alginate method, Nanoscale Advances, 1 (2019) 3151-3163.
[84] E. Marais, T. Nyokong, Adsorption of 4-nitrophenol onto Amberlite® IRA-900 modified with metallophthalocyanines, Journal of hazardous materials, 152 (2008) 293-301.
[85] G. Mele, E. Garcìa-Lòpez, L. Palmisano, G. Dyrda, R. Słota, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes, The Journal of Physical Chemistry C, 111 (2007) 6581-6588.
[86] O.A. O'Connor, L. Young, Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions, Environmental Toxicology and Chemistry: An International Journal, 8 (1989) 853-862.
[87] A.K. Srivastava, K. Mondal, K. Mukhopadhyay, N.E. Prasad, A. Sharma, Facile reduction of para-nitrophenols: catalytic efficiency of silver nanoferns in batch and continuous flow reactors, RSC advances, 6 (2016) 113981-113990.
[88] S. Sharma, R. Vyas, N. Sharma, V. Singh, A. Singh, V. Kataria, B.K. Gupta, Y. Vijay, Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies, Journal of Alloys and Compounds, 552 (2013) 208-212.
[89] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32 (1976) 751-767.
[90] U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes, RSC Advances, 8 (2018) 17582-17594.
[91] C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang, Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA, RSC advances, 7 (2017) 23699-23708.
[92] X. Zou, X. Dong, L. Wang, H. Ma, X. Zhang, X. Zhang, Preparation of Ni doped ZnO-TiO2 composites and their enhanced photocatalytic activity, International Journal of Photoenergy, 2014 (2014) 893158.
[93] L. Sharma, R. Kakkar, Hierarchical porous magnesium oxide (Hr-MgO) microspheres for adsorption of an organophosphate pesticide: kinetics, isotherm, thermodynamics, and DFT studies, ACS applied materials & interfaces, 9 (2017) 38629-38642.
[94] S. Pitchaimuthu, K. Honda, S. Suzuki, A. Naito, N. Suzuki, K.-i. Katsumata, K. Nakata, N. Ishida, N. Kitamura, Y. Idemoto, Solution Plasma Process-Derived Defect-Induced Heterophase Anatase/Brookite TiO2 Nanocrystals for Enhanced Gaseous Photocatalytic Performance, ACS Omega, 3 (2018) 898-905.
[95] D.S. Meshesha, R.C. Matangi, S.R. Tirukkovalluri, S. Bojja, Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co-doped TiO2 nanomaterial for degradation of methylene blue, Journal of Asian Ceramic Societies, 5 (2017) 136-143.
[96] R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130 (2014) 581-590.
[97] X. Zhang, Y. Chen, S. Zhang, C. Qiu, High photocatalytic performance of high concentration Al-doped ZnO nanoparticles, Separation and Purification Technology, 172 (2017) 236-241.
[98] F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, Materials & Design, 101 (2016) 309-316.
[99] M.A. Behnajady, B. Alizade, N. Modirshahla, Synthesis of Mg‐doped TiO2 nanoparticles under different conditions and its photocatalytic activity, Photochemistry and photobiology, 87 (2011) 1308-1314.
[100] H.I. Salaheldin, Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes, Advances in Natural Sciences: Nanoscience and Nanotechnology, 8 (2017) 045001.
[101] Y.S. Seo, E.-Y. Ahn, J. Park, T.Y. Kim, J.E. Hong, K. Kim, Y. Park, Y. Park, Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid, Nanoscale research letters, 12 (2017) 7.
[102] H. Abdullah, N.S. Gultom, D.-H. Kuo, A simple one-pot synthesis of a Zn (O, S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction, New Journal of Chemistry, 41 (2017) 12397-12406.
[103] D. Guerrero-Araque, P. Acevedo-Peña, D. Ramírez-Ortega, R. Gómez, Improving photocatalytic reduction of 4-nitrophenol over ZrO2-TiO2 by synergistic interaction between methanol and sulfite ions, New Journal of Chemistry, 41 (2017) 12655-12663.
[104] A. Hernandez-Gordillo, S. Obregón, F. Paraguay-Delgado, V. Rodríguez-González, Effective photoreduction of a nitroaromatic environmental endocrine disruptor by AgNPs functionalized on nanocrystalline TiO2, RSC Advances, 5 (2015) 15194-15197.
[105] H. Abdullah, D.-H. Kuo, Utilization of photocatalytic hydrogen evolved (Zn, Sn)(O, S) nanoparticles to reduce 4-nitrophenol to 4-aminophenol, International Journal of Hydrogen Energy, 44 (2019) 191-201.
[106] B. Barrocas, O. Monteiro, M.M. Jorge, S. Sério, Photocatalytic activity and reusability study of nanocrystalline TiO2 films prepared by sputtering technique, Applied Surface Science, 264 (2013) 111-116.
[107] M. Faraz, F.K. Naqvi, M. Shakir, N. Khare, Synthesis of samarium-doped zinc oxide nanoparticles with improved photocatalytic performance and recyclability under visible light irradiation, New Journal of Chemistry, 42 (2018) 2295-2305.
[108] T.K. Ghorai, Synthesis of spherical mesoporous titania modified iron-niobate nanoclusters for photocatalytic reduction of 4-nitrophenol, Journal of Materials Research and Technology, 4 (2015) 133-143.
[109] Z. Wu, Y. Zhang, X. Wang, Z. Zou, Ag@ SrTiO3 nanocomposite for super photocatalytic degradation of organic dye and catalytic reduction of 4-nitrophenol, New Journal of Chemistry, 41 (2017) 5678-5687.
[110] M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: effects of calcination temperature and UV-assisted thermal synthesis, Journal of environmental management, 196 (2017) 487-498.
[111] R. Giovannetti, C. D’Amato, M. Zannotti, E. Rommozzi, R. Gunnella, M. Minicucci, A. Di Cicco, Visible light photoactivity of polypropylene coated nano-TiO2 for dyes degradation in water, Scientific reports, 5 (2015) 17801.
[112] M. Romero Saez, L. Jaramillo, R. Saravanan, N. Benito, E. Pabón, E. Mosquera, F. Gracia Caroca, Notable photocatalytic activity of TiO2-polyethylene nanocomposites for visible light degradation of organic pollutants, Express Polymer Letter, 11 (2017) 899-909.
[113] R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Materials Science in Semiconductor Processing, 42 (2016) 2-14.
[114] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25 (2015) 1-29.
[115] Y. Wang, J. Zhang, L. Liu, C. Zhu, X. Liu, Q. Su, Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning, Materials Letters, 75 (2012) 95-98.
[116] G. Jiang, R. Wang, H. Jin, Y. Wang, X. Sun, S. Wang, T. Wang, Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts, Powder technology, 212 (2011) 284-288.
[117] H. Mamane, I. Horovitz, L. Lozzi, D. Di Camillo, D. Avisar, The role of physical and operational parameters in photocatalysis by N-doped TiO2 sol-gel thin films, Chemical Engineering Journal, 257 (2014) 159-169.
[118] D. Venieri, I. Gounaki, V. Binas, A. Zachopoulos, G. Kiriakidis, D. Mantzavinos, Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2, Applied Catalysis B: Environmental, 178 (2015) 54-64.
[119] K.M. Shrestha, C.M. Sorensen, K.J. Klabunde, MgO-TiO2 mixed oxide nanoparticles: comparison of flame synthesis versus aerogel method; characterization, and photocatalytic activities, Journal of Materials Research, 28 (2013) 431-439.
[120] H. Jafari, S. Afshar, Improved photodegradation of organic contaminants using nano‐TiO2 and TiO2-SiO2 deposited on Portland cement concrete blocks, Photochemistry and photobiology, 92 (2016) 87-101.
[121] N. Bayal, P. Jeevanandam, Sol-gel synthesis of SnO2-MgO nanoparticles and their photocatalytic activity towards methylene blue degradation, Materials Research Bulletin, 48 (2013) 3790-3799.
[122] M. Stefan, O. Pana, C. Leostean, C. Bele, D. Silipas, M. Senila, E. Gautron, Synthesis and characterization of Fe3O4-TiO2 core-shell nanoparticles, Journal of Applied Physics, 116 (2014) 114312.
[123] W. Duan, S. Lu, Z. Wu, Y. Wang, Size effects on properties of NiO nanoparticles grown in alkalisalts, The Journal of Physical Chemistry C, 116 (2012) 26043-26051.
[124] V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS applied materials & interfaces, 4 (2012) 2717-2725.
[125] M. Tahir, N.S. Amin, Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4, Applied Catalysis B: Environmental, 162 (2015) 98-109.
[126] R. Ponraj, A.G. Kannan, J.H. Ahn, D.-W. Kim, Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide, ACS applied materials & interfaces, 8 (2016) 4000-4006.
[127] M. Wu, Y. Fu, W. Zhan, Y. Guo, Y. Guo, Y. Wang, G. Lu, Catalytic performance of MgO-supported Co catalyst for the liquid phase oxidation of cyclohexane with molecular oxygen, Catalysts, 7 (2017) 155.
[128] M.N. Ghazzal, R. Wojcieszak, G. Raj, E.M. Gaigneaux, Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM, Beilstein journal of nanotechnology, 5 (2014) 68-76.
[129] B.S. Yang, S. Oh, Y.J. Kim, S.J. Han, H.W. Lee, H.J. Kim, S. Kim, H.K. Park, J. Heo, J.K. Jeong, The anomalous effect of oxygen ratio on the mobility and photobias stability of sputtered zinc-tin-oxide transistors, IEEE Transactions on Electron Devices, 61 (2014) 2071-2077.
[130] S. Yang, Y. Feng, J. Wan, W. Zhu, Z. Jiang, Effect of CeO2 addition on the structure and activity of RuO2/γ-Al2O3 catalyst, Applied surface science, 246 (2005) 222-228.
[131] S. Yang, W. Zhu, Z. Jiang, Z. Chen, J. Wang, The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts, Applied surface science, 252 (2006) 8499-8505.
[132] Y. Zhang, J. Lu, M.R. Hoffmann, Q. Wang, Y. Cong, Q. Wang, H. Jin, Synthesis of gC3N4/Bi2O3/TiO2 composite nanotubes: enhanced activity under visible light irradiation and improved photoelectrochemical activity, RSC Advances, 5 (2015) 48983-48991.
[133] K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil, Template-free synthesis of MgO nanoparticles for effective photocatalytic applications, Powder technology, 249 (2013) 456-462.
[134] M. Rashad, A. Ibrahim, D. Rayan, M. Sanad, I. Helmy, Photo-Fenton-like degradation of Rhodamine B dye from waste water using iron molybdate catalyst under visible light irradiation, Environmental nanotechnology, monitoring & management, 8 (2017) 175-186.
[135] D. Neena, K.K. Kondamareddy, H. Bin, D. Lu, P. Kumar, R. Dwivedi, V.O. Pelenovich, X.-Z. Zhao, W. Gao, D. Fu, Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO, Scientific reports, 8 (2018) 10691.
[136] S.K. Warkhade, S.P. Zodape, U.R. Pratap, A.V. Wankhade, Rutile TiO2/CoSe nanocomposite: An efficient photocatalyst for photodegradation of model organic dyes under visible light irradiation, Journal of Molecular Liquids, 279 (2019) 434-443.
[137] F.T. Bekena, H. Abdullah, D.-H. Kuo, M.A. Zeleke, Photocatalytic reduction of 4-nitrophenol using effective hole scavenger over novel Mg-doped Zn (O, S) nanoparticles, Journal of Industrial and Engineering Chemistry, 78 (2019) 116-124.
[138] M.-L. Chen, F.-J. Zhang, W.-C. Oh, Promoting effect of MgO in the photodegradation of methylene blue over MgO/MWCNT/TiO2 photocatalyst, Korean Journal of Materials Research, 20 (2010) 345-350.
[139] D.-H. Kuo, K.-H. Tzeng, Characterization and properties of rf-sputtered thin films of the alumina-titania system, Thin Solid Films, 460 (2004) 327-334.
[140] D.-H. Kuo, K.-H. Tzeng, C.-H. Chien, Characterization of nonstoichiometric TiO2 and ZrO2 thin films stabilized by Al2O3 and SiO2 additions, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21 (2003) 1996-2002.
[141] E. Vesali-Kermani, A. Habibi-Yangjeh, S. Ghosh, Visible-light-induced nitrogen photofixation ability of g-C3N4 nanosheets decorated with MgO nanoparticles, Journal of Industrial and Engineering Chemistry, 84 (2020) 185-195.
[142] M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review, Critical reviews in environmental science and technology, 48 (2018) 806-857.
[143] E. Vesali-Kermani, A. Habibi-Yangjeh, H. Diarmand-Khalilabad, S. Ghosh, Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination, Journal of Colloid and Interface Science, 563 (2020) 81-91.
[144] S. Hu, L. Yang, Y. Tian, X. Wei, J. Ding, J. Zhong, P.K. Chu, Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation, Journal of colloid and interface science, 431 (2014) 42-49.
[145] M. Yan, Y. Wu, Y. Yan, X. Yan, F. Zhu, Y. Hua, W. Shi, Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes, ACS Sustainable Chemistry & Engineering, 4 (2015) 757-766.
[146] S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, BiOBr and AgBr co-modified ZnO photocatalyst: a novel nanocomposite with pnn heterojunctions for highly effective photocatalytic removal of organic contaminants, Journal of Photochemistry and Photobiology A: Chemistry, 379 (2019) 11-23.
[147] A. Ishikawa, T. Takata, T. Matsumura, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation, The Journal of Physical Chemistry B, 108 (2004) 2637-2642.
[148] B. Li, L. Jiang, X. Li, Z. Cheng, P. Ran, P. Zuo, L. Qu, J. Zhang, Y. Lu, Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production, Advanced Functional Materials, 29 (2019) 1806229.
[149] F.T. Bekena, H. Abdullah, D.-H. Kuo, M.A. Zeleke, Photocatalytic Reduction of 4-nitrophenol Using Effective Hole Scavenger Over Novel Mg-doped Zn (O, S) Nanoparticles, Journal of Industrial and Engineering Chemistry, 78 (2019) 116-124.
[150] S. Wang, H. Huang, Y. Zhang, A novel layered bismuth-based photocatalytic material LiBi3O4Cl2 with OH and h+ as the active species for efficient photodegradation applications, Solid State Sciences, 62 (2016) 43-49.
[151] B. Weng, X. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: synthesis, formation mechanism, and photocatalytic application, Langmuir, 31 (2015) 4314-4322.
[152] J. Ke, J. Liu, H. Sun, H. Zhang, X. Duan, P. Liang, X. Li, M.O. Tade, S. Liu, S. Wang, Facile assembly of Bi2O3/Bi2S3/MoS2n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation, Applied Catalysis B: Environmental, 200 (2017) 47-55.
[153] R. Vijayaraghavan, Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO, Materials Science and Engineering: C, 77 (2017) 1027-1034.
[154] X. Bi, N. Wu, C. Zhang, P. Bai, Z. Chai, X. Wang, Synergetic effect of heterojunction and doping of silver on ZnNb2O6 for superior visible-light photocatalytic activity and recyclability, Solid State Sciences, 84 (2018) 86-94.
[155] S. Bera, S. Ghosh, R.N. Basu, Fabrication of Bi2S3/ZnO heterostructures: an excellent photocatalyst for visible-light-driven hydrogen generation and photoelectrochemical properties, New Journal of Chemistry, 42 (2018) 541-554.
[156] M. Li, J. Wang, P. Zhang, Q. Deng, J. Zhang, K. Jiang, Z. Hu, J. Chu, Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory, Scientific reports, 7 (2017) 42484.
[157] F. Nan, P. Li, J. Li, T. Cai, S. Ju, L. Fang, Experimental and Theoretical Evidence of Enhanced Visible Light Photoelectrochemical and Photocatalytic Properties in MoS2/TiO2 Nanohole Arrays, The Journal of Physical Chemistry C, 122 (2018) 15055-15062.
[158] H. Guo, H.-Y. Niu, C. Liang, C.-G. Niu, D.-W. Huang, L. Zhang, N. Tang, Y. Yang, C.-Y. Feng, G.-M. Zeng, Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 pn heterostructure with rapid charge transfer assisted visible light photocatalysis, Journal of Catalysis, 370 (2019) 289-303.
[159] W. Li, D. Du, T. Yan, D. Kong, J. You, D. Li, Relationship between surface hydroxyl groups and liquid-phase photocatalytic activity of titanium dioxide, Journal of colloid and interface science, 444 (2015) 42-48.
[160] D. Jun, W. Qi, S. ZHONG, G. Xin, L. Jiao, G. Haizhi, W. ZHANG, P. Hailong, Z. Jianguo, Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films, Journal of Rare Earths, 33 (2015) 148-153.
[161] J. Zhang, L. Xu, Z. Zhu, Q. Liu, Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation, Materials Research Bulletin, 70 (2015) 358-364.
[162] Y. Bu, Z. Chen, C. Sun, Highly efficient Z-Scheme Ag3PO4/Ag/WO3− x photocatalyst for its enhanced photocatalytic performance, Applied Catalysis B: Environmental, 179 (2015) 363-371.
[163] Z. Ma, L. Hu, X. Li, L. Deng, G. Fan, Y. He, A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation, Ceramics International, 45 (2019) 15824-15833.
[164] Y. Xing, G. Ni, J. Liu, Y. Tian, W. Que, New insights into photocatalytic mechanism and photoelectrochemical property of bismuth oxybromide heterostructure with DFT investigation, Applied Surface Science, 458 (2018) 464-477.
[165] A. Habibi-Yangjeh, A. Akhundi, Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants, Journal of Molecular Catalysis A: Chemical, 415 (2016) 122-130.
[166] P.K. TKM, A.K. SK, Visible-light-induced degradation of rhodamine B by nanosized Ag2S-ZnS loaded on cellulose, Photochemical & Photobiological Sciences, 18 (2019) 148-154.
[167] Y. Wang, H. Yang, X. Sun, H. Zhang, T. Xian, Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation, Materials Research Bulletin, (2019) 110754.
[168] M. Xie, T. Zhang, A novel efficient visible-light-driven double Z-scheme PANI/Ag3PO4/CNO heterojunction photocatalyst mediated by PANI and in situ grown AgNPs, Journal of Materials Science, 55 (2020) 3974-3990.
[169] Y. Wang, Y. Zeng, S. Wan, W. Cai, F. Song, S. Zhang, Q. Zhong, In Situ Fabrication of 3D Octahedral g‐C3N4/BiFeWOx Double‐Heterojunction for Highly Selective CO2 Photoreduction to CO Under Visible Light, ChemCatChem, 10 (2018) 4578-4585.
[170] C. Chen, M. Li, Y. Jia, R. Chong, L. Xu, X. Liu, Surface defect-engineered silver silicate/ceria pn heterojunctions with a flower-like structure for boosting visible light photocatalysis with mechanistic insight, Journal of Colloid and Interface Science, 564 (2020) 442-453.
[171] W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production, Applied Catalysis B: Environmental, 219 (2017) 693-704.
[172] W. Shi, F. Guo, S. Yuan, In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation, Applied Catalysis B: Environmental, 209 (2017) 720-728.

QR CODE