簡易檢索 / 詳目顯示

研究生: 廖健宏
Jian-Hong Liao
論文名稱: 人機協同半自動化拋光作業之研究
Investigation of a Semi-Automation Cooperative Polishing Process
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 修芳仲
Fang-Jung Shiou
鄧昭瑞
Geo-Ry Tang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 半自動作業合作式機器人阻抗控制
外文關鍵詞: Semi-Autonomous Operation, Cooperative Robots, Impedance Control
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人機協同半自動化作業,簡單定義為需要人與自動化設備共同完成的作業程序,其優點為透過人的操控和判斷,適合處理較複雜的作業,例如焊接、車子板金的拋光及人工關節的研磨等,並藉由自動化設備的輔助,從事反覆進行或是需要較大外力介入的工作,以提升工作的效率和穩定性。
    因此本文將建立合作式半自動架構(一種人機協同半自動架構),應用於拋光定力實驗中。此架構分為兩部分,第一部分為自主式機器人,負責夾持拋光刀具並依照工件形狀事先規劃運動軌跡;第二部分為主從式機器人,主控端為觸覺回饋搖桿,從端為三軸平台。實驗設置將工件安裝在力量感測器上,並同時固定於三軸平台終端器上,而力量感測器所量測的力量資訊將回饋給主控端。操作者可藉由主控端來感受自主式機器人拋光時的接觸力,並同時控制三軸平台終端器的移動,間接改變刀具與工件的接觸現象,來維持拋光所需的接觸力。
    最後將設計阻抗控制器來模擬操作者對主從式機器人的控制,藉由比較半自動作業與控制器作業的實驗結果,來驗證本文建立之合作式半自動架構的可行性,並透過多位操作者的實驗測試,判斷是否有個體差異的存在。

    關鍵字:半自動作業、合作式機器人、阻抗控制


    Semi-Automated Cooperative Operations (SCO) are processes that require human and automated machine(s) to work together to complete a task. The advantage of SCO is that it can handle more complicated operations such as welding, polishing and grinding based on the operator’s manipulation and judgement. With the auxiliary of automated machine, SCO can be used for repetitive tasks and tasks that require large external force to increase effectiveness and stability of operation.
    In this thesis, an SCO was designed to control the polishing force for a polishing operation. The structure of the SCO can be divided into two sections. The first part is an autonomous robot, which is responsible for clamping the polishing tool and preprogramming the motion trajectory according to the shape of the workpiece. The second part is the master-slave robot, the master is the tactile feedback joystick, and the slave is a 3-axis platform. The experimental setup is the workpiece mounted on the force sensor and fixed to the end effector of 3-axis platform. The force signal measured by the force sensor will feedback to the master. The operator can feel the contact force of polishing by the master, and then control the movement of the end effector of 3-axis platform at the same time, which indirectly changed the contact phenomenon between the tool and the workpiece to maintain the contact force while polishing.
    Finally, the impedance controller will be designed to replace the control of operator in 3-axis platform. By comparing the experimental results of SCO and the operation with controller, the feasibility of SCO designed in this paper will be verified. And the results of multiple manipulation of different operators determine whether there exists an individual difference in the task.

    Keywords : Semi-Autonomous Operation , Cooperative Robots, Impedance Control

    摘 要 I ABSTRACT II 誌 謝 III 目  錄 IV 圖 索 引 VI 表 索 引 IX 第一章 緒論 1 1.1 前言與研究目標 1 1.2 文獻回顧 3 1.2.1 半自動化作業 3 1.2.2 合作式機器人 4 1.2.3 順應性控制 6 1.2.4 遠端操控機器人 8 1.3 研究目的 9 1.4 論文架構 10 第二章 自主式機器人軌跡規劃 11 2.1 軌跡規劃背景說明 11 2.1.1 工具座標與工件座標 12 2.1.2 機器人手動操作模式 13 2.1.3 機器人運動指令與轉彎區數據 14 2.1.4 工具與工件介紹 15 2.2 在RobotStudio上建立運動軌跡 18 2.2.1 在RobotStudio上進行運動軌跡編成方法 19 2.2.2 機器人控制器的連接與同步 21 2.3 拋光接觸力不穩定的原因 22 2.4 針對第一種接觸力不穩定原因進行平台的調整 23 2.5 針對第二種接觸力不穩定原因進行參數的分析 27 2.6 使用合作式半自動架構的原因 28 第三章 系統架構 29 3.1 主從式機器人之硬體組成 29 3.1.1 觸覺回饋搖桿 29 3.1.2 三軸平台 29 3.1.3 力量感測器 30 3.2 二階阻抗系統用途與參數設定 30 3.3 遠端控制系統 32 3.3.1 力量感測器的通訊方式 33 3.3.2 主控端的通訊與操作方法 34 3.3.3 三軸平台的控制架構 36 第四章 實驗設計與結果 37 4.1 實驗設計 37 4.1.1 阻抗控制器設計 38 4.2 實驗流程 39 4.3 第一組實驗結果 41 4.3.1 第一部分實驗結果 42 4.3.2 第二部分實驗結果 44 4.4 第二組實驗結果 46 4.4.1 第一部分實驗結果 47 4.4.2 第二部分實驗結果 48 4.5 第三組實驗結果 50 4.5.1 第一部分實驗結果 51 4.5.2 第二部分實驗結果 52 4.6 實驗分析與討論 54 4.6.1 第一組實驗結果分析 54 4.6.2 第二組實驗結果分析 56 4.6.3 第三組實驗結果分析 57 4.6.4 結果討論 59 第五章 結論 62 5.1 結論 62 5.2 未來展望 62 參考文獻 64 附錄 A 1 附錄 B 2

    [1] Ross, B., Bares, J., & Fromme, C. (2003). A semi-autonomous robot for stripping paint from large vessels. The International Journal of Robotics Research, 22(7-8), 617-626.
    [2] Boxerbaum, A. S., Werk, P., Quinn, R. D., & Vaidyanathan, R. (2005, July). Design of an autonomous amphibious robot for surf zone operation: Part I mechanical design for multi-mode mobility. In Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on (pp. 1459-1464). IEEE.
    [3] Luth, T., Ojdanic, D., Friman, O., Prenzel, O., & Graser, A. (2007, June). Low level control in a semi-autonomous rehabilitation robotic system via a brain-computer interface. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on (pp. 721-728). IEEE.
    [4] Chen, G., Pham, M. T., & Redarce, T. (2009). Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Robotics and Autonomous Systems, 57(6-7), 712-722.
    [5] Moustris, G. P., Hiridis, S. C., Deliparaschos, K. M., & Konstantinidis, K. M. (2011). Evolution of autonomous and semi‐autonomous robotic surgical systems: a review of the literature. The International Journal of Medical Robotics and Computer Assisted Surgery, 7(4), 375-392.
    [6] Shiomi, M., Sakamoto, D., Kanda, T., Ishi, C. T., Ishiguro, H., & Hagita, N. (2008, March). A semi-autonomous communication robot: a field trial at a train station. In Proceedings of The 3rd ACM/IEEE International Conference on Human Robot Interaction (pp. 303-310). ACM.
    [7] Okada, Y., Nagatani, K., & Yoshida, K. (2009, October). Semi-autonomous operation of tracked vehicles on rough terrain using autonomous control of active flippers. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 2815-2820). IEEE.
    [8] Van der Loos, H. M., Wagner, J. J., Smaby, N., Chang, K., Madrigal, O., Leifer, L. J., & Khatib, O. (1999). ProVAR assistive robot system architecture. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on (Vol. 1, pp. 741-746). IEEE.
    [9] Kumar, R., Berkelman, P., Gupta, P., Barnes, A., Jensen, P. S., Whitcomb, L. L., & Taylor, R. H. (2000). Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation. In Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on (Vol. 1, pp. 610-617). IEEE.
    [10] Scholtz, J. (2003, January). Theory and evaluation of human robot interactions. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on (pp. 10-pp). IEEE.
    [11] Lee, K. Y., Lee, S. Y., Choi, J. H., Lee, S. H., & Han, C. S. (2006, October). The application of the human-robot cooperative system for construction robot manipulating and installing heavy materials. In SICE-ICASE, 2006. International Joint Conference (pp. 4798-4802). IEEE.
    [12] Rahman, S. M., Ikeura, R., Nobe, M., & Sawai, H. (2010, March). Design guidelines for industrial power assist robots for lifting heavy objects based on human's weight perception for better HRI. In Proceedings of The 5th ACM/IEEE International Conference on Human-Robot Interaction (pp. 121-122). IEEE Press.
    [13] Saida, M., Medina, J. R., & Hirche, S. (2012, September). Adaptive attitude design with risk-sensitive optimal feedback control in physical human-robot interaction. In RO-MAN, 2012 IEEE (pp. 955-961). IEEE.
    [14] Krüger, J., & Surdilovic, D. (2008). Robust control of force-coupled human–robot-interaction in assembly processes. CIRP Annals-Manufacturing Technology, 57(1), 41-44.
    [15] Rozo, L., Bruno, D., Calinon, S., & Caldwell, D. G. (2015, September). Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (pp. 1024-1030). IEEE.
    [16] Erden, M. S., & Billard, A. (2015). End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping. IEEE Transactions on Cybernetics, 45(6), 1146-1157.
    [17] Erden, M. S., & Billard, A. (2016). Robotic assistance by impedance compensation for hand movements while manual welding. IEEE Transactions on Cybernetics, 46(11), 2459-2472.
    [18] Peternel, L., Tsagarakis, N., & Ajoudani, A. (2016, October). Towards multi-modal intention interfaces for human-robot co-manipulation. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on (pp. 2663-2669). IEEE.
    [19] Chung, S. J., & Slotine, J. J. E. (2009). Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Transactions on Robotics, 25(3), 686-700.
    [20] Sun, D., Wang, C., Shang, W., & Feng, G. (2009). A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. IEEE Transactions on Robotics, 25(5), 1074-1086.
    [21] Liu, Y. C., & Chopra, N. (2012). Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Transactions on Robotics, 28(1), 268-275.
    [22] 鄒岱潔,「混成式系統法則運用於移動式機器手臂合作控制」,臺灣大學電機工程學研究所學位論文,民國94年。
    [23] 巫瑞永,「互動雙足式機器人之設計與實現 (II) 雙足式機器人控制」,中央大學電機工程學系學位論文,民國97年。
    [24] 諸穎澔,「具力感知外罩之類人形機械手臂之智慧型阻抗控制」,成功大學機械工程學系學位論文,民國98年。
    [25] 劉育成,「模仿人類動作下的機器手臂姿態與端點軌跡規劃」,臺北科技大學自動化科技研究所學位論文,民國101年。
    [26] 范越強,「強健性同步定位製圖與多機器人環境探索之研究」,成功大學電機工程學系學位論文,民國102年。
    [27] 李冠德,「設計輔助控制系統應用於上肢復健機器人」,臺灣大學電機工程學研究所學位論文,民國102年。
    [28] 唐禎祺,「具有雙手臂之單輪球型移動機器人的軌跡追蹤控制與合作式抓取及放置」,中興大學電機工程學系所學位論文,民國106年。
    [29] Paul, R. and Shimano, B. Compliance and Control. Proc. of Joint Automation
    Control Conference, New York,1976, pp.694-699.
    [30] Raibert, M. H. and Craig, J. J. Hybrid position/force control of manipulators.
    Journal of Dynamic Systems, Measurement and Control, Transactions of the
    ASME, Vol.103, pp. 275-282, 1981.
    [31] Hogan, N. (1985). Impedance control: An approach to manipulation: Part II—Implementation. Journal of Dynamic Systems, Measurement, and Control, 107(1), 8-16.
    [32] Kazerooni, H., Houpt, P., & Sheridan, T. (1986). Robust compliant motion for manipulators, Part II: Design method. IEEE Journal on Robotics and Automation, 2(2), 93-105.
    [33] Liu, G. J., & Goldenberg, A. A. (1991, April). Robust hybrid impedance control of robot manipulators. In Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on (pp. 287-292). IEEE.
    [34] Lu, W. S., & Meng, Q. H. (1991). Impedance control with adaptation for robotic manipulations. IEEE Transactions on Robotics and Automation, 7(3), 408-415.
    [35] Tsuji, T., Terauchi, M., & Tanaka, Y. (2004). Online learning of virtual impedance parameters in non-contact impedance control using neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(5), 2112-2118.
    [36] Jung, S., & Hsia, T. C. (1998). Neural network impedance force control of robot manipulator. IEEE Transactions on Industrial Electronics, 45(3), 451-461.
    [37] Vukobratovic, M., Ekalo, Y. and Katic, D. Dynamic and robust control of robot-environment interaction. World Scientific, Vol. 2, New Jersey, 2009.
    [38] Heinrichs, B., Sepehri, N., & Thornton-Trump, A. B. (1997). Position-based impedance control of an industrial hydraulic manipulator. IEEE Control Systems, 17(1), 46-52.
    [39] Lim, H. O., Setiawan, S. A., & Takanishi, A. (2004). Position-based impedance control of a biped humanoid robot. Advanced Robotics, 18(4), 415-435.
    [40] Nio, S., & Maruyama, Y. (1993, September). Remote-operated robotic system for live-line maintenance work. In Transmission and Distribution Construction and Live Line Maintenance, 1993. Proceedings from ESMO-93., Sixth International Conference on (pp. 425-435). IEEE.
    [41] Kheddar, A. (2001). Teleoperation based on the hidden robot concept. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 31(1), 1-13.
    [42] Kim, V. B., Chapman Iii, W. H., Albrecht, R. J., Bailey, B. M., Young, J. A., Nifong, L. W., & Chitwood Jr, W. R. (2002). Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci. Surgical Laparoscopy Endoscopy & Percutaneous Techniques, 12(1), 33-40.
    [43] Caccavale, F., Natale, C., Siciliano, B., & Villani, L. (2005). Integration for the next generation: embedding force control into industrial robots. IEEE Robotics & Automation Magazine, 12(3), 53-64.
    [44] Griffin, W. B., Provancher, W. R., & Cutkosky, M. R. (2005). Feedback strategies for telemanipulation with shared control of object handling forces. Presence: Teleoperators & Virtual Environments, 14(6), 720-731.
    [45] Kong, K., Bae, J., & Tomizuka, M. (2009). Control of rotary series elastic actuator for ideal force-mode actuation in human–robot interaction applications. IEEE/ASME Transactions on Mechatronics, 14(1), 105-118.
    [46] Franken, M., Stramigioli, S., Misra, S., Secchi, C., & Macchelli, A. (2011). Bilateral telemanipulation with time delays: A two-layer approach combining passivity and transparency. IEEE Transactions on Robotics, 27(4), 741-756.
    [47] You, E., & Hauser, K. (2012, June). Assisted teleoperation strategies for aggressively controlling a robot arm with 2d input. In Robotics: Science and Systems (Vol. 7, p. 354).
    [48] 周立人,「結合虛擬實境與機器人之遠端操控系統:力感之呈現與操控」,國立交通大學電控工程研究所碩士論文,民國86年。
    [49] 林瑋慶,「模擬系統之兩軸力回饋搖桿設計與控制」,國立交通大學電控工程研究所碩士論文,民國90年。
    [50] 林永昇,「結合主動視覺與虛擬實境之長控機器人系統之網路式力回饋遠端操作」,國立成功大學機械工程學系碩士論文,民國93年。
    [51] 林猷長,「視覺與力覺整合於機器人遠端操作之應用」,國立交通大學電控工程研究所碩士論文,民國95年。
    [52] 梁少麟,「力覺回饋系統於機器人遠端操控之應用」,國立交通大學電機學院電機與控制學程碩士論文,民國95年。
    [53] 劉浩德,「機械手臂手端位置與力量之遠端遙控」,國立台灣科技大學機械工程系碩士論文,民國104年。
    [54] 簡邑宇,「遠端遙控機械手臂位置與力量回饋之研究」,國立台灣科技大學機械工程系碩士論文,民國105年。
    [55] 闕子晨,「五自由度機械手臂之開發與力量控制應用」,國立台灣科技大學機械工程系碩士論文,民國107年。
    [56] 葉暉、管小清(2010)。工業機器人實操與應用技巧。北京:機械工業出版社。
    [57] ABB(2016)。Product manual IRB 1200。

    無法下載圖示 全文公開日期 2023/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE