簡易檢索 / 詳目顯示

研究生: 陳坤廷
Kun-Ting Chen
論文名稱: 機器手臂的力回饋控制應用於工業精密組裝任務之研究
The Force Feedback Control of Robot Arm for Industrial Precision Assembly Tasks
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 何明果
none
溫哲彥
none
林其禹
Chyi-Yeu Lin
鄧惟中
Wei-Chung Teng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 機器手臂精密組裝任務順應性阻抗控制
外文關鍵詞: robot arm, precise assembly tasks, compliance, impedance control
相關次數: 點閱:213下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業機器人技術的發展與進步,工業機器人逐漸需要面對與環境互相接觸的任務,例如:精密組裝任務。單純使用位置命令控制工業機器人,將會因為定位誤差使工件與環境發生不正常的磨損與碰撞,導致工業機器人、工件或環境的損壞。
    一般工業機器人使用位置控制模式,為了使工業機器人能夠在不更改控制模式的情況下執行精密組裝任務,本研究提出具備期望力量的阻抗控制,利用關節位置命令為基礎之阻抗控制器搭配期望力量與阻抗參數調變策略,使機器人在執行精密組裝任務時,可以適當地調整終端效果器的位置與姿勢,順應環境給予的力量與力矩並完成任務,此方法不需估算機器人的動力學模型,適用於所有位置控制模式的機器人。此外為了正確估測環境給予機器人的外力與力矩,本研究使用力量/力矩座標系轉換方法,將感測器座標系量測到的力量與力矩轉換到終端效果器,使機器人順應真實的外力與力矩。
    本研究的實驗分為兩部分:力量/力矩座標系轉換基礎實驗與軸孔組裝實驗。力量/力矩座標系轉換基礎實驗的實驗結果證實本研究提出的方法可以正確轉換力量與力矩的參考座標系。此外本研究以軸孔組裝任務驗證具備期望力量的阻抗控制器與阻抗參數調變策略,實驗結果證實相較於固定阻抗參數的阻抗控制器,可變阻抗參數方法較適用於軸孔組裝任務;相較於固定期望力量,可變期望力量可以使軸孔組裝任務的過程時間縮短。最後使用本研究所提之方法完成三組不同餘隙的軸孔組裝任務。


    As the technology of industrial robots develops and improves, industrial robots grow to execute the tasks interacted with environment, such as precise assembly tasks. Under the situation of positioning errors, using a pure position controller to control an industrial robot will cause the irregular impact, and destroy the industrial robot, tools, and the environment.
    The industrial robots are generally controlled under position mode. In order to utilize the industrial robots to execute the precise assembly task under position mode, this study proposes a strategy which named the variable impedance control with the desired force. This strategy is composed of the joint position based impedance control and the impedance parameters varying method. This strategy appropriately adjusts the position and orientation of the end-effector, and makes the robot compliant to the force/moment which acted by the environment. Using this strategy, the dynamics of the robot does not need to be derived. Therefore, this strategy can be utilized to control any position commanded robot. In addition, in order to correctly estimate external force/moment applied on the end-effector, this study derives the transformation of the force/moment on different coordinate frame. Using this transformation, the force/moment sensed from the coordinate frame of the sensor can be translated to the coordinate frame of the end-effector.
    The experiments of this study include the fundamental experiment of the transformation of force/moment and peg-in-hole assembly experiments. The fundamental experiment of transformation of force/moment verifies that the transformation of force/moment coordinate frame correctly transforms the reference coordinate frame of force/moment. Moreover, this study utilizes peg-in-hole assembly tasks to verify the impedance control with desired force and the impedance parameters varying method. The results show that the impedance controller with variable parameters is more suitable than one with fix parameters; compared with fix desired force, the variable desired force can decrease the process time of the assembly task. Finally, the proposed method is utilized to implement three peg-in-hole assembly tasks with the different sets of clearance.

    中文摘要I AbstractIII 致謝V 目錄VII 符號索引IX 圖目錄X 表目錄XIV 第一章緒論1 1.1前言1 1.2文獻討論3 1.3研究動機與目的6 第二章研究方法7 2.1阻抗模型7 2.2以位置命令為基礎之阻抗控制9 2.3具備期望力量之阻抗控制12 2.4軸孔精密組裝之幾何分析15 2.4.1導角幾何分析15 2.4.2可容許偏差角度的幾何分析16 2.5應用於軸孔組裝之阻抗參數調變策略21 2.5.1導角順應策略21 2.5.2偏差角度順應策略23 2.6力量/力矩之座標系轉換25 第三章實驗與結果討論28 3.1實驗設備介紹29 3.1.1六軸機器手臂系統29 3.1.2圓軸與圓孔32 3.2實驗與結果35 3.2.1力量/力矩座標系轉換基礎實驗35 3.2.2不具力量/力矩座標系轉換的軸孔組裝實驗38 3.2.3具備期望力量的阻抗控制於軸孔組裝實驗44 3.3結果討論84 第四章結論與未來展望86 參考文獻87 附錄91

    [1]ISO Standard 8373:1994, Robots and robotic devices — Vocabulary
    [2]Endregaard, E.A. 2002. “Paint robotics - Improving automotive painting performance.” Metal Finishing 100 (5): 8-13.
    [3]Murakami, S., F. Takemoto, H. Fujimura, and E. Ide. 1989. “Weld-line tracking control of arc welding robot using fuzzy logic controller.” Fuzzy Sets and Systems 32 (2): 221-237.
    [4]Wan, D., L. Hui, and T. Xiaoting. 2007. “Off-line programming of spot-weld robot for car-body in white based on robcad.” In Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation (ICMA 2007), 763-768. Harbin, China.
    [5]Lozano-Pérez, T., J.L. Jones, E. Mazer, and P.A. O'Donnell. 1989. “Task-Level Planning of Pick-and-Place Robot Motions.” Computer 22 (3): 21-29.
    [6]Yamataka, M., T. Kuga, T. Takayama, M. Furukawa, and J.I. Ishida. 2008. “Robot assembly system for LCD TV using cooperative force control.” In 34th Annual Conference of the IEEE Industrial Electronics Society (IECON 2008), 3443-3448. Orlando, FL, USA.
    [7]Dauchez, P., and X. Delebarre. 1991. “Force-controlled assembly of two objects with a two-arm robot.” Robotica 9(3): 299-306.
    [8]Liu, S., and H. Asada. 1993. “Task-level robot adaptive control based on human teaching data and its application to deburring.” In American Control Conference, 1414-1417. San Francisco, CA, USA.
    [9]Kazerooni, H. 1999. “Automated Robotic Deburring Using Impedance Control.” IEEE Control Systems Magazine 8 (1): 21-25.
    [10]Rosell, J., J. Gratacos, and L. Basanez. 1999. “Automatic programming tool for robotic polishing tasks.” In Proceedings of the IEEE International Symposium on Assembly and Task Planning, 250-255. Porto, Portugal.
    [11]Jinno, M., F. Ozaki, T. Yoshimi, K. Tatsuno, M. Takahashi, M. Kanda, Y. Tamada, and S. Nagataki. 1995. “Development of a force controlled robot for grinding, chamfering and polishing.” In IEEE International Conference on Robotics and Automation, 1455-1460. Nagoya, Japan.
    [12]Zeng, G., and A. Hemami. 1997. “An overview of robot force control.” Robotica, 15 (5): 473-482.
    [13]Okata, M., Y. Nakamura, and S. Hoshino. 2000. “Design of active/passive hybrid compliance in the frequency domain.” In Proceedings - IEEE International Conference on Robotics and Automation, 2250-2257. San Francisco, CA, USA.
    [14]Bright, G., and C. Deubler. 1999. “Design and implementation of an intelligent remote centre compliance (IRCC) for state of the art process control and self optimization.” In Proceedings of the 1999 IEEE International Symposium on Industrial Electronics (ISIE'99), 929-933. Bled, Slovenia.
    [15]Ciblak, N., and H. Lipkin. 2003. “Design and analysis of remote center of compliance structures.” Journal of Robotic Systems 20 (8): 415-427.
    [16]Liu, Y., and M.Y. Wang. 2014. “Optimal design of remote center compliance devices of rotational symmetry.” IFIP Advances in Information and Communication Technology 435 (0): 161-169.

    [17]Jalani, J., N. Mahyuddin, G. Herrmann, and C. Melhuish. 2013. “Active robot hand compliance using operational space and Integral Sliding Mode Control.” In 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing (AIM 2013) 1749-1754. Wollongong, NSW, Australia.
    [18]Salisbury, J.K. 1980. “Active stiffness control of a manipulator in cartesian coordinates.” In Proceedings of the IEEE Conference on Decision and Control, 95-100. Albuquerque, NM.
    [19]Degoulange, E., and P. Dauchez. 1994. “External force control of an industrial PUMA 560 robot.” Journal of Robotic Systems 11 (6): 523-540.
    [20]Hogan, N. 1985. “Impedance Control: An Approach to Manipulation: Part III – Applications.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 107 (1) :17-24.
    [21]Hogan, N. 1985. “Impedance control: an approach to manipulation: part I – theory.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 107 (1): 1-7.
    [22]Hogan, N. 1985. “Impedance control: an approach to manipulation: part II –implementation.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 107 (1): 8-16.
    [23]Whitney, D.E. 1977. “Force feedback control of manipulator fine motions.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 99 (2): 91-97.
    [24]Seraji, H. 1994. “Adaptive admittance control: an approach to explicit force control in compliant motion.” In IEEE International Conference on Robotics and Automation 2705-2710. San Diego, CA, USA.
    [25]Raibert, M.H., and J.J. Craig. 1981. “Hybrid position/force control of manipulators.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 103 (2): 126-133.
    [26]Volpe, R., and P. Khosla. 1993. “A theoretical and experimental investigation of explicit force control strategies for manipulators.” IEEE Transactions on Automatic Control 38 (11): 1634-1650.
    [27]Volpe, R., and P. Khosla. 1992. “An experimental evaluation and comparison of explicit force control strategies for robotic manipulators.” In Proceedings - IEEE International Conference on Robotics and Automation 1387-1393. Nice, Fr.
    [28]Cheah, C.C., and D. Wang. 1998. “Learning impedance control for robotic manipulators.” IEEE Transactions on Robotics and Automation 14 (3): 452-465.
    [29]Ficuciello, F., L. Villani, and B. Siciliano. 2015. ”Variable Impedance Control of Redundant Manipulators for Intuitive Human–Robot Physical Interaction.” IEEE Transactions on Robotics 31 (4): 850-863.
    [30]Pitakwatchara, P. 2015. “Task Space Impedance Control of the Manipulator Driven Through the Multistage Nonlinear Flexible Transmission.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 137 (2): 021001-1-021001-17.
    [31]Ma, G., Z. Jiang, H. Li, J. Gao, Z. Yu, X. Chen, Y.H. Liu, and Q. Huang. 2015. “Hand-eye servo and impedance control for manipulator arm to capture target satellite safely.” Robotica 33 (4): 848-864.
    [32]Toscano, L., V. Falkenhahn, A. Hildebrandt, F. Braghin, and O. Sawodny. 2015. “Configuration space impedance control for continuum manipulators.” In 6th International Conference on Automation, Robotics and Applications (ICARA 2015) 597-602. Rydges Lakeland Resort Queenstown, New Zealand.
    [33]Funabora, Y., H. Song, S. Doki, and K. Doki. 2014. “Position Based Impedance Control based on Pressure Distribution for Wearable Power Assist Robots.” In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2014) 1874-1879. San Diego, United States.
    [34]Broenink, J.F., and M.L.J. Tiernego. 1996. “Peg-in-Hole assembly using Impedance Control with a 6 DOF Robot.” In Proceedings 8th European Simulation Symposium 504-508. Genoa, Italy.
    [35]Chan, S.P., and H.C. Liaw. 1995. “Impedance control strategy for robotic assembly tasks.” In Proceedings of the 1995 IEEE 21st International Conference on Industrial Electronics, Control, and Instrumentation 1372-1377. Orlando, US.
    [36]Chan, S.P., and H.C. Liaw. 1996. “Generalized impedance control of robot for assembly tasks requiring compliant manipulation.” IEEE Transactions on Industrial Electronics 43 (4): 453-461.
    [37]Petrovic, P.B., and V.R. Milacic. 1998. “Concept of an intelligent fuzzy control for assembly robot.” CIRP Annals - Manufacturing Technology 47 (1): 9-12.
    [38]Chen, H., and J. Xiao. 2011 “Robust compliant assembly automation using an industrial robot.” In Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA 2011) 1161-1166. Beijing, China.
    [39]Kim, Y.L., H.C. Song, and J.B. Song. 2013. “Force control based jigless assembly strategy of a unit box using dual-arm and friction.” In 2013 44th IEEE International Symposium on Robotics (ISR 2013). Seoul, South Korea.
    [40]Nammoto, T., K. Kosuge, and K. Hashimoto. 2013. “Model-based compliant motion control scheme for assembly tasks using vision and force information.” In IEEE International Conference on Automation Science and Engineering (CASE 2013) 948-953. Madison, WI, United States.
    [41]Connolly, T.H., and F. Pfeiffer. 1993. “Neural network hybrid position/force control,” 1993 International Conference on Intelligent Robots and Systems 240-244.Yokohama, Japan.
    [42]Giblin, D.J., Y. Liu, and K. Kazerounian. 2008. “Target tracking robotic manipulation theories applied to force/position control in peg-in-hole assembly tasks.” International Journal of Robotics and Automation 23 (1): 49-54.
    [43]Rabenorosoa, K., C. Clévy, and P. Lutz. 2010. “Hybrid force/position control applied to automated guiding tasks at the microscale.” In 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010) 4366-4371. Taipei, Taiwan.
    [44]Zhang, J., D. Xu, Z.T. Zhang, and W.S. Zhang. 2013. “Position/force hybrid control system for high precision aligning of small gripper to ring object.” International Journal of Automation and Computing 10 (4): 360-367.
    [45]Carelli, R., and R. Kelly. 1989. “Adaptive control of constrained robots modeled by singular systems.” In Proceedings of the 28th IEEE Conference on Decision and Control 2635-2640. Tampa, FL, USA.
    [46]Carelli, R., and V. Mut. 1993. “Adaptive motion-force control of robots with uncertain constraints.” Robotics and Computer Integrated Manufacturing 10 (6): 393-399.
    [47]Cao, X., and Y. Li. 2006. “Robust adaptive neural network control of uncertain rheonomically constrained manipulators.” In 2006 IEEE International Conference on Robotics and Biomimetics (ROBIO 2006) 744-749. Kunming, China.
    [48]陳正欽,2015。「以關節位置命令為基礎之可變阻抗控制應用於人與機器人協同作業」,博士論文,國立台灣科技大學,台北市。
    [49]Rong, W., M. Li, L. Sun, and Z. Li. 2006. “A 6-DOF parallel robot for optical precise operation.” In 32nd Annual Conference on IEEE Industrial Electronics 4165-4169. Paris, France.
    [50]Ma, L., W. Rong, L. Sun, and Z. Gong. 2009. “Micro operation robot for optical precise assembly.” Jixie Gongcheng Xuebao/Journal of Mechanical Engineering 45 (2): 280-287.
    [51]Kim, D.H., S.J. Lim, D.H. Lee, J.Y. Lee, and C.S. Han. 2013. “A RRT-based motion planning of dual-arm robot for (Dis)assembly tasks.” In 2013 44th International Symposium on Robotics (ISR 2013). Seoul, South Korea.
    [52]Park, C., and K. Park. 2008. “Design and kinematics analysis of dual arm robot manipulator for precision assembly.” In 6th IEEE International Conference on Industrial Informatics 430-435. Daejeon, South Korea.
    [53]Park, C., K. Park, and D. Kim. 2008. “Design of dual arm robot manipulator for precision assembly of mechanical parts.” In International Conference on Smart Manufacturing Application (ICSMA 2008) 424-427. Gyeonggi-do, South Korea.
    [54]You, J.S., D.H. Kim, S.J. Lim, S.P. Kang, J.Y. Lee, and C.S. Han. 2012. “Development of manipulation planning algorithm for a dual-arm robot assembly task.” In IEEE International Conference on Automation Science and Engineering 1061-1066. Seoul, South Korea.
    [55]Krüger, J., G. Schreck, and D. Surdilovic. 2011. “Dual arm robot for flexible and cooperative assembly.” CIRP Annals - Manufacturing Technology 60 (1): 5-8.
    [56]Puente, E.A., C. Balaguer, and A. Barrientos. 1991. “Force-torque sensor-based strategy for precise assembly using a SCARA robot.” Robotics and Autonomous Systems 8 (3): 203-212.

    QR CODE