簡易檢索 / 詳目顯示

研究生: 鄭祺瀚
Chi-Han Zheng
論文名稱: 混合位置/阻抗控制應用於機器手臂軸孔插配作業之研究
A Study of Hybrid Position/Impedance Control Applied to Peg-In-Hole Task with Robot Arm
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
黃昌群
Chang-Chiun Huang
林其禹
Chyi-Yeu Lin
溫哲彥
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 阻抗控制混合位置/阻抗控制插配任務
外文關鍵詞: Impedance control, Hybrid position/impedance control, Peg-In-Hole
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業製造上,插配被廣泛的應用,如手機製造業和汽車。在插配過程中,位置與姿勢的誤差容易發生卡阻問題,導致機器手臂與工件損毀。因此,只有使用位置控制插配是相當困難的。為了克服這些問題,必須加入順應性控制,因此機器人在插配過程中,隨著接觸力的改變產生適當的順應能力。
    本研究實驗中,分別使用位置控制,阻抗控制和混合位置/阻抗控制執行插配任務,比較三種方法在位置的精準度和所花費的時間。藉由實驗結果得知混合位置/阻抗控制與阻抗控制皆能順應環境且完成任務,但混合位置/阻抗控制在位置精準度比較準確,時間也花費較少,因為在插入的方向保持位置控制快速到達目標,而其餘方向保持阻抗控制避免損壞設備。結合此兩種控制器的優點,調整位置與姿勢,使機器手臂順應插配任務。從實驗結果驗證,此控制器提供機械手臂具有良好的順應能力。


    In manufacturing industries, peg-in-hole tasks are widely applied, such as phone manufacturing and automotive. Thus, in case of peg-in-hole, jamming easily occur because of position/orientation errors. That may damage the robot arm and work piece. For this reason, it is very difficult to peg-in-hole by only position control. In order to overcome this problem, it is necessary to join compliance control. In peg-in-hole process, robot arm generates compliance ability with change of the contact force.
    In this study, position control, impedance control and hybrid position/impedance control were used to execute the task of peg-in-hole. Comparison between three methods in accuracy and execution time were investigated. Experimental result shows that hybrid position/impedance control executed task successfully. From experiment, we found hybrid position/impedance control is the most accurate and the fastest compare to the others method. Hybrid position/impedance control maintains the inserted direction with position control to reach the target quickly, and the other directions are maintained with impedance control to avoid equipment damages. Advantages of two controller methods and adjust position/orientation are combined to make robot arm compliant when performing peg-in-hole tasks. Experimental results confirm, this controller provides robot arm with good compliance ability.

    摘要 I Abstract II 誌謝 IV Contents V List of Figures VIII List of Tables XII Chapter 1 Introduction 1.1 Background 1.2 Literature Review 1.2.1 Impedance control [1] 1.2.2 Hybrid motion control [2] 1.2.3 Peg-in-hole task 1.3 Research Motivation and Purpose Chapter 2 Research Methods 2.1 Robot arm kinematics 2.1.1 Homogeneous transformation 2.1.2 Denavit-Hartenberg method 2.1.3 Forward kinematics 2.1.4 Inverse kinematics 2.2 Position-based impedance control 2.3 Hybrid position/impedance control strategy Chapter 3 Experimental Equipment 3.1 Actuator modules 3.1.1 Motors and drivers 3.1.2 Gear reductions 3.2 Interface cards 3.2.1 Motion control card 3.2.2 Data acquisition card 3.3 Sensors 3.3.1 Force sensor 3.3.2 Optical sensor 3.4 The end-effector of manipulator Chapter 4 Results and Analysis 4.1 Experimental design for different impedance parameters 4.2 The experiment of peg-in-hole task 4.2.1 Experimental result and analysis Chapter 5 Conclusion and Future Work References

    [1] Hogan, N., “Impedance Control: An Approach to Manipulation: Parts I-III,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp.1-24 (1985).
    [2] Raibert, M. H., and Craig, J. J., “Hybrid Position/Force Control of Manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.102, pp.126-133 (1981).
    [3] Kazerooni, H., and Houpt, P. K., “Robust Compliant Motion for Manipulators, Part 11: Design Method,” IEEE journal of robotics and automation, Vol. RA-2, pp.93-105 (1986).
    [4] Chan, S. P., and Liaw, H. C., “Generalized Impedance Control of Robot for Assembly Tasks Requiring Compliant Manipulation,” IEEE Transactions on Industrial Electronics, Vol. 43, pp. 453-461 (1996).
    [5] Goldenberg, A. A., “Implementation of Force and Impedance Control in Robot Manipulators,” Proceedings of the IEEE Conference on Robotics and Automation, Philadelphia, PA, USA, pp. 1626-1632 (1988).
    [6] Yoshikawa, T., “Force Control of Robot Manipulators,” Proceedings of the IEEE Conference on Robotics and Automation, Kyoto, Japan pp. 220-226 (2000).
    [7] Xu, G., and Song, A., “Fuzzy Variable Impedance Control for Upper-Limb Rehabilitation Robot,” Proceedings 5th International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, Shandong, pp. 216-220 (2008).
    [8] Heinrichs, B., Sepehri, N., and Thornton-Trump, A. B., “Position-Based Impedance Control of an Industrial Hydraulic Manipulator,” IEEE Control Systems Magazine, Vol. 17, pp. 46-52 (1997).
    [9] Love, L. J., and Book, W. J., “Force Reflecting Teleoperation with Adaptive Impedance Control,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 34, pp. 159-165 (2004).
    [10] Jung, S., Hsia, T. C., Bonitz, R. G. “Force Tracking Impedance Control of Robot Manipulators under Unknown Environment,” IEEE Transactions on Control Systems Technology, Vol. 12, pp. 474-483 (2004).
    [11] Lopes, A. and Almeida, F., “A Force-Impedance Controlled Industrial Robot using an Active Robotic Auxiliary Device,” Robotics and Computer-Integrated Manufacturing, Vol. 24, pp. 299-309 (2008).
    [12] Shadpey, F., Talebi, H. A., Jayender, J. and Patel, R. V., “A Robust Position and Force Control Strategy for 7-DOF Redundant Manipulators,” IEEE/ASME Transactions on Mechatronics, Vol. 14, pp. 575-589 (2009).
    [13] Anderson, R. J., and Spong, M. W., “Hybrid Impedance Control of Robotic Manipulators,” IEEE journal of robotics and automation, Vol. 4, pp.549-556 (1988).
    [14] Liu, G. J., and Goldenberg, A. A., “Robust Hybrid Impedance Control of Robot Manipulators,” Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, CA, USA, pp. 287-292 (1991).
    [15] Rabenorosoa, K., “Hybrid Force/Position Control applied to Automated Guiding Tasks at the Microscale,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4366-4371 (2010).
    [16] Dedi, Ma., Hesheng, W. and Weidong, C., “Unknown Constrained Mechanisms Operation based on Dynamic Hybrid Compliance Control,” IEEE International Conference on Robotics and Biomimetics, pp. 2366-2371 (2011).
    [17] Whitney, D. E., “Quasi-Static Assembly of Compliantly Supported Rigid Part,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 104, No.1, pp.65-77 (1982).
    [18] Nevins, J. L. and Whitney, D. E., “Research on Advanced Assembly Automation,” Computer, Vol. 10, pp. 24-38 (1977).
    [19] Caine, M. E., Lozano-Perez, T., and Seering, W. P., “Assembly Strategies for Chamferless parts,” Proceedings, 1989 IEEE International Conference on Robotics and Automation, Vol.1, pp. 472-477 (1989).
    [20] Shahinpoor, M. and Zohoor, H., “Analysis of Dynamic Insertion Type Assembly for Manufacturing Automation,” Proceedings, 1991 IEEE International Conference on Robotics and Automation, Vol.3, pp. 2458-2464 (1991).
    [21] Park, Y. K. and Cho, H. S., ”A Fuzzy Rule-based Assembly Algorithm for Precision Parts Mating,” Mechatronics, Vol. 3, pp. 433-450 (1993).
    [22] Radin, B. and Gershon, D., “Fuzzy Compliance Control of Robotic assembly tasks,” in Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence, Proceedings of the Third IEEE Conference, Vol.2, pp. 819-824 (1994).
    [23] Broenink, Jan F. and Tiernego Martin, L. J., ” Peg-in-Hole Assembly using Impedance Control with a 6 DOF Robot,” Proceedings, 8th European Simulation Symposium, "Simulation in Industry", Oct. 24-26 1996, Genoa, Italy, A. G. Bruzzone and E.H.J. Kerckhoffs, SCS, pp. 504-508 (1996).
    [24] Austin, D. and McCarragher, B., “Force Control Command Synthesis for Assembly using a Discrete Event Framework,” Proceedings, 1997 IEEE International Conference on Robotics and Automation, Vol.2, pp. 933-938 (1997).
    [25] In-Wook, K. Dong-Jin, L. and Kab-Il, K., “Active Peg-In-Hole of Chamferless Parts using Force/Moment Sensor,” Proceedings, 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.2, pp. 948-953 (1999).
    [26] Birkhimer, C. E., “Extracting Human Strategies for Use in Robotic Assembly,” Department of Electrical Engineering and Computer Science of Case Western Reserve University School of Graduate Studies (2005).
    [27] Chen, H., Wang, J., Zhang, G., Fuhlbrigge, T. and Kock, S., “Robotic Soft Servo for Industrial High Precision Assembly,” IEEE Conference on Robotics, Automation and Mechatronics, pp. 24-29 (2008).
    [28] Kim, Y-L., Kim, B-S., Song, J-B., “Hole Detection Algorithm for Square Peg-in-Hole using Force-based Shape Recognition,” IEEE Conference on Automation Science and Engineering, pp.1074-1078(2012).
    [29] Spong, M. W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, John Wiley & Sons, Inc., USA, pp. 56-60 (2006).

    無法下載圖示 全文公開日期 2018/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE