簡易檢索 / 詳目顯示

研究生: 曹顥嚴
Hao-Yen Tsao
論文名稱: 應用六軸CNC傘齒輪切齒機進行諧波齒輪剛輪之強力刮齒加工
Power Skiving for Producing Circular Gear of Harmonic Driver on Six-Axis CNC Machine
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 吳育仁
Yu-Ren Wu
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 72
中文關鍵詞: 諧波齒輪剛輪強力刮齒圓柱型刀具零誤差刀具六軸CNC傘齒輪切齒機
外文關鍵詞: Harmonic gear reducer, Circular spline, Power skiving, Cylindrical tool, Error-free tool profile, Six-axis CNC bevel gear cutting machine
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

諧波齒輪減速機的優點在於擁有高減速比的特性,除了用於航空產業,現在也廣泛的運用在機械手臂中,諧波減速機主要由三個零件組成,分別為波產生器、柔輪和剛輪,其中剛輪為內齒輪,可以使用強力刮齒加工製造。近年來齒輪產業在圓柱齒輪開始採用強力刮齒的製造方法,其優點不但與滾齒加工相同,更可以用於生產內和外齒輪。刀具齒形設計為強力刮齒的關鍵技術之一,若能提出一針對不同齒輪的刀具齒形設計方法,將能使得強力刮齒可以更廣泛的被應用。另外強力刮齒刀具根據文獻可以發現多使用錐型設計,這種設計可以有效的避免刀具和齒輪間的干涉,缺點在於刀具重磨後齒形會有些微的誤差降低齒輪精度。若是使用圓柱型刀具的設計,便可以有效的改善重磨後的誤差問題,並且容易製造。
本研究將建立諧波齒輪剛輪之強力刮齒圓柱型刀具數學模式,及使用圓柱型強力刮齒刀具之六軸機切齒機械設定推導。首先建立諧波齒輪柔輪和剛輪齒形數學模式,接著推導零誤差圓柱型強力刮齒刀具輪廓數學模式,以及強力刮齒加工之機械設定。最後推導於六軸CNC傘齒輪切齒機的強力刮齒加工座標位置,進而編程加工NC碼,以進行諧波齒輪剛輪強力刮齒的模擬。


The superiority of harmonic gear reducers is their high reduction ratio with compact design, that makes them be very common in aviation and mechanical industries. A harmonic reducer is mainly composed of three parts, which are a wave generator, a flex spline, and a circular spline. The circular flex spline is an internal gear which can be manufactured using power skiving (PS). PS is getting more and more popular in recent gear industry because it has the same advantages of hobbing process and can be applied to internal and external gears. Tooth profile design is one of key technologies for PS tool. If a design method of tool profile for different gears can be established, it will enable PS to be more widely used. In addition, according to the reference, PS tools are mostly designed as a tapered tool. This design can effectively avoid interference between the tool and the workpiece. The disadvantage of a tapered PS tool is slight errors inevitably found on its tool profile, and that reduces gear manufacturing precision after being resharpened. On contrary, if the PS tool is cylindrical type, the profile is identical in each resharpened face, and that enables tool to easy manufacture.
The paper aims to establish the mathematical model of cylindrical PS tool and to derive machine settings when the cylindrical tool is conducted. First of all, the mathematical models of the flex spline and circular spline are established, and then the mathematical model of the cylindrical tool profile with error-free and machine settings of universal machine are derived. Moreover, coordinates of the six-axis CNC bevel gear cutting machine can be derived according to inverse kinematics. Therefore, the PK can be implemented in this modern CNC machine with profile-error free.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 VIII 表目錄 X 符號索引 XI 第1章 序論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 論文架構 4 第2章 諧波減速機之柔輪和剛輪理論齒形數學模式 5 2.1 前言 5 2.2 諧波齒輪介紹 5 2.3 柔輪齒條刀具設計 6 2.4 柔輪齒形數學模式 10 2.5 剛輪齒形數學模式 12 2.5.1 波產生器 12 2.5.2 柔輪中性線 12 2.5.3 剛輪創成座標系統 13 2.6 數值範例 16 2.7 小結 23 第3章 剛輪強力刮齒加工之圓柱型刀具數學模式 24 3.1 前言 24 3.2 剛輪齒形擬合 24 3.3 強力刮齒運動數學模式 26 3.4 零誤差強力刮齒等截面形刀具設計 28 3.4.1 剛輪產形輪數學模式 28 3.4.2 等截面形刀具設計 30 3.5 刀具與工件隙角計算 34 3.6 數值範例 35 3.7 小結 41 第4章 六軸CNC傘齒輪切齒機之強力刮齒加工數學模式 43 4.1 前言 43 4.2 六軸CNC傘齒輪切齒機介紹 43 4.3 泛用強力刮齒座標轉換矩陣 43 4.4 六軸CNC傘齒輪切齒機座標轉換矩陣 44 4.5 六軸CNC傘齒輪切齒機機械設定推導 46 4.6 電子齒輪箱的運作 46 4.7 數值範例 47 4.8 小結 48 第5章 剛輪之強力刮齒加工運動和切削模擬 49 5.1 前言 49 5.2 刀具和工件的運動座標轉換矩陣 49 5.3 強力刮齒運動和切削模擬 50 5.4 數值範例 52 5.5 小結 53 第6章 結論與建議 54 6.1 結果與討論 54 6.2 建議與未來展望 55 參考文獻 56

[1] V. Pittler, Process for cutting gears by means of a gear-like cutting tool provided with cutting edges on the front surfaces of the teeth, German Patent, 243514, 1910.
[2] Kojima, M., “On the Clearance Angles of Skiving Cutter,” Bulletin of JSME, 17(105) pp. 401-408, 1974.
[3] Kojima, M., and Nishijima, K., “Gear Skiving of Involute Internal Spur Gear,” Bulletin of JSME, 17(106), pp. 511-518, 1974.
[4] Kobialka, C, Dr. –Ing. “Contemporary Gear Pre-machining Solutions.” Gear Solutions, pp. 43-49, Apr, 2013.
[5] Stadtfeld, H. J., “Power Skiving of Cylindrical Gears on Different Machine Platforms,” Gear Technology, 31(1), pp. 52-62, 2014.
[6] Chen, X.C., Li, J., and Lou, B.C., “A Study on the Design of Error-Free Spur Slice Cutter,” International Journal of Advanced Manufacturing Technology, 68, pp. 727-738, 2013.
[7] Guo, E., Hong, R., Huang, X., Fang, C., “Research on the Design of Skiving Tool for Machining Involute Gears,” Journal of Mechanical Science and Technology, 28(12), pp. 5107–5115, 2014.
[8] Guo, E., Hong, R., Huang, X., Fang, C., “A Novel Power Skiving Method Using the Common Shaper Cutter,” Journal of Mechanical Science and Technology, 83, pp. 157-165, 2016.
[9] Guo, E., Ren, N., Liu, Z., Zheng, X., “Influence of Sensitive Pose Errors on Tooth Deviation of Cylindrical Gear in Power Skiving,” Journal of Mechanical Science and Technology, 11(4), pp. 1-12, 2019.
[10] Guo, E., Ren, N., Ren, X., Liu, C., “An Efficient Tapered Tool Having Multiple Blades for Manufacturing Cylindrical Gears with Power Skiving,” International Journal of Advanced Manufacturing Technology, 102(9-12), 2823-2832, 2019.
[11] C.-Y. Tsai, “Mathematical Model for Design and Analysis of Power Skiving Tool for Involute Gear Cutting,” Mechanism and Machine Theory, 101, pp. 195–208, 2016.
[12] I. Moriwaki, T. Osafune, M. Nakamura, M. Funamoto, K. Uriu, T. Murakami, E. Nagata, N. Kurita, T. Tachikawa and Y. K., “Cutting Tool Parameters of Cylindrical Skiving Cutter with Sharpening Angle for Internal Gears,” Journal of Mechanical Design, 139(3), 033301, 11 pages, 2017.
[13] Shih, Y. P. Li, Y. J., “A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture,” Journal of Mechanical Design, 140(4): 043302, 9 pages, 2018.
[14] Rogers, D. F., and Adams, J. A. Mathematical Elements for Computer Graphics. second edition. New York, USA: McGraw-Hill., 1990.
[15] Shih, Y. P. “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator,” Transactions of ASME, Journal of Mechanical Design, 130 /062604-1-10, 2008.
[16] 江智煜,應用強力刮齒法於六軸工具機刮削內齒輪之研究,碩士論文,國立成功大學機械工程學系,台南,2016。
[17] Musser, C. W. Strain Wave Gearing. U.S. Patent, 2906143, 1959.
[18] Musser, C. W. “Breakthrough in mechanical drive design: The Harmonic Drive,” Machine Design, pp. 160-173., 1960.
[19] Kondo, K., Takada, J. STUDY ON WAVE GEAR DRIVES (KINEMATICS AND GEOMETRY OF TOOTH ENGAGEMENT). JSME International Journal, 30(263), 854-860. doi:10.1299/jsme1987.30.854., 1987.
[20] Kondo, K., Takada, J. “Study on tooth profiles of the harmonic drive,” Journal of Mechanical Design, Transactions of the ASME, 112, 131-137. doi:10.1115/1.2912570, 1, Mar., 1990.
[21] Kondo, K. Study on wave gear drives (second report, design of involute tooth profiles). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 62(603), 4363-4368. doi:10.1299/kikaic.62.4363., 1996.
[22] Ishikawa, S. Tooth Profile of Spline of Strain Wave Gearing, U.S. Patent, 4823638, 1989.
[23] 辛洪兵,雙圓弧諧波齒輪滾齒刀,中華人民共和國專利,101134256B,2010。
[24] 程雲豪,漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計,碩士論文,國立中央大學機械工程學系,桃園,2017。
[25] Cao, X., Song, S., Xie, H., Wang, M., “Design and Analysis of Double-Arc Tooth Profile Profile Harmonic Drive,” Advances in Intelligent Systems and Computing. 691, 19-29. doi: 10.1007/978-3-319-70990-1_4, 2018.
[26] 林佑杰,諧波齒輪之輸出傳遞誤差及背隙誤差分析研究,碩士論文,國立台灣科技大學機械工程學系,台北,2018。
[27] F.L. Litvin, A. Fuentes, Gear Geometry and Applied Theory, second edition, Cambridge University Press, Cambridge, UK, 2004.
[28] Harmonic Drive LLC., Harmonic Drive精密控制用減速機綜合型錄 available at: https://drive.google.com/open?id=1ABRrV9Nl575HQqUTwSH9-ihbIxRmMx2F. 2015.

無法下載圖示 全文公開日期 2025/08/16 (校內網路)
全文公開日期 2025/08/16 (校外網路)
全文公開日期 2025/08/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE