簡易檢索 / 詳目顯示

研究生: 陳鴻文
Hung-Wen Chen
論文名稱: 具有高功率輸出之短脈衝光纖雷射: 設計與實現
Design and Implementation of High-power and Short-pulse Fiber Laser
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 葉秉慧
Ping-Hui Yeh
邱裕中
Yu-Zung Chiou
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 偏振疊加波鎖模雷射鉺鐿共摻光纖鉺鐿共摻光纖放大器
外文關鍵詞: Passively mode-locked laser, Polarization APM Laser, Erbium/Ytterbuim co-doped fiber, Erbium/Ytterbuim co-doped fiber amplifier.
相關次數: 點閱:329下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將研製一高功率輸出的短脈衝雷射,可望用於高精密加工、雷射切割、醫療美容雷射、微創手術,甚至是軍事照明運用等。為達成此目的,本文架設一被動式偏振疊加波鎖模架構來產生鎖模雷射,並透過不同的架構元件修改來找出輸出表現最佳的架構,當泵激雷射電流操作在200 mA下,並透過耦合分光器之分光比的參數調整後可得到最寬之頻寬輸出,3 dB頻譜寬度為10.08 nm,且脈衝雷射的中心波長約在1560 nm附近,屬於C-Band波段,接著透過共振腔長度調整,建構出三種不同規格的脈衝雷射,其脈衝寬度約為5 ns、20 ns與400 ns,利用平均功率與重複率大小可計算出脈衝能量分別為2.34、3.98與86.2 nJ。
然而脈衝之平均輸出功率不足以滿足目標需求,因此本文將設計高功率鉺鐿共摻光纖放大器來提升脈衝之平均功率,並針對高功率放大器的增益介質長度進行優化以達到最佳增益,同時分析前向與後向泵激架構,最後由於雜訊指數及脈衝尖峰功率過大等考量,選擇前向泵激架構來繼續後續實驗,在放大器泵激光源電流操作在3 A之下,可使最佳增益達到28.36 dB。
最終本論文將上述所提出之被動式偏振疊加波鎖模當作種子雷射,藉由高功率鉺鐿共摻光纖放大器來提升整體之平均輸出功率,最後當三種規格的短脈衝雷射之平均功率為13.02、13.27與15.67 mW且放大器泵激光源操作於7 A時,能得到放大後之平均輸出功率分別為2041.74、2018.37與2084.49 mW且經過放大器後之脈衝表現並不會有明顯畸變,有效地將脈衝能量提升為367.22 nJ、606.11 nJ與11.46 μJ,將輸入放大器前後數據比較後,三種共振腔長度的脈衝能量依序放大了約157、152和133倍。


In this thesis, we develop a high-power and short-pulsed laser and we expect to use it in the applications of high-precision machining, laser cutting, medical beauty, minimally invasive surgery and military lighting. In order to achieve this objective, the passively mode-locked laser was built up by using the polarization additive-pulse mode-locking (APM) mechanism. Different structures and elements were designed and used to find a better configuration. Under 200 mW driving current, the widest bandwidth output is obtained by adjusting the splitting ratio of the splitter; while the 3 dB bandwidth is 10.08 nm and the center wavelength of the pulsed laser, which belongs to the C-Band, is about 1560 nm. Through the adjustment of resonant cavity length, we can find the construction of three different specifications of the pulsed laser; while the pulse width is about 5 ns, 20 ns and 400 ns. Moreover, we use the average power and the repetition rate to calculate that the pulse energy is 2.34 nJ, 3.98 nJ and 86.2 nJ, respectively.
However, the average output power of the pulsed laser isn’t sufficient to meet the target requirements, so we design a high-power Erbium/Ytterbim co-doped fiber amplifier (EYDFA) to enhance the average power of the pulse. We also optimize for the gain fiber length of the high power amplifier to achieve the optimum gain while analyzing the forward and backward of pumping architectures. To consider that the noise figure and the peak power of the pulse is too large, we decide to select the forward pump architecture to continue the follow-up experiment. At 3A driving current for pumped laser diode, the maximum gain is 28.36 dB for the EYDFA in 0 dBm launched laser.
Finally, the passively polarization APM laser as mentioned above was acted as a seed laser and was amplified by an Erbium/Ytterbim co-doped fiber amplifier. When the average power of the three standard short-pulsed lasers are 13.02 mW, 13.27 mW and 15.67 mW, as well as the amplifier pump laser source is operated at 7 A, the average output power can be obtained to be 2041.74 mW, 2018.37 mW and 2084.49 mW. The performance of the pulse through the amplifier do not have significant distortion, while the pulse energy is effectively promoted to 367.22 nJ, 606.11 nJ and 11.46 μJ. After the comparison of the data, the pulse energy of the three resonant cavity lengths is approximately amplified by 157, 152 and 133 times, respectively.

目錄 摘要 I Abstract II 致謝 IV 目錄 V 圖表索引 VII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3文獻回顧 4 1.4論文架構 6 第二章 光纖雷射原理與量測儀器介紹 7 2.1光纖雷射簡介 7 2.2短脈衝雷射產生機制與原理 8 2.2.1 Q-開關式脈衝雷射原理 8 2.2.2鎖模脈衝雷射原理 10 2.3被動式鎖模光纖雷射 13 2.3.1半導體飽和吸收鏡鎖模雷射 13 2.3.2偏振疊加波鎖模雷射 14 2.4光纖放大器原理與介紹 15 2.4.1光纖放大器之應用 16 2.4.2光纖放大器之泵激型態 17 2.5高功率鉺鐿共摻光纖放大器 19 2.5.1鉺鐿離子能階轉換原理 19 2.6量測短脈衝儀器介紹 22 第三章 短脈衝雷射架構建置與量測 26 3.1環形光纖雷射架構 26 3.1.1短脈衝雷射架構 28 3.2短脈衝雷射實際與理論值比較 34 3.3短脈衝雷射之耦合分光參數調整 37 3.4短脈衝雷射之共振腔長度調整 43 第四章 高功率鉺鐿共摻光纖放大器研製 48 4.1高功率鉺鐿共摻光纖放大器架構分析 48 4.1.1高功率泵激雷射介紹 48 4.1.2前向泵激放大器 52 4.1.3後向泵激放大器 54 4.2增益介質之長度探討與實驗方法 55 4.2.1前向泵激光纖放大器的特性量測 57 4.2.2後向泵激放大器結果 61 第五章 結合短脈衝雷射與鉺鐿共摻光纖放大器 67 5.1結合架構分析 67 5.2輸出結果量測 68 5.3光纖接頭損壞之改善與實驗結果 74 第六章 結論與未來展望 78 6.1結論 78 6.2未來展望 79 參考文獻 82

[1] 廖顯奎,“光纖原理與應用技術”,台北,五南圖書,2012年。
[2] A. Weiner, “ Utrafast optics ” Wiley Series in Pure and Applied Optics, 2009.
[3] U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, pp. 831-838, 2003.
[4] C. Barnard, P. Myslinski, J. Chrostowski and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and laser,” IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1817-1830, 1994.
[5] 楊隆昌,“雷射發展的趨勢與應用”,中工高雄會刊,pp.23-33,2013年。
[6] J. K. Sahu, Y. Jeong, D. J. Richardson and J. Nilsson, “A 103 W Erbium-Ytterbium co-doped large-core fiber laser”, Optics Communications, pp. 159-163, 2003.
[7] Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng and J. Weng, “1-, 1.5- and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber ,”IEEE Journal of Lightwave Technology, vol. 32, no. 24, pp.4077-4084, 2014.
[8] Grelu, Philippe, and Nail Akhmediev. “ Dissipative solitons for mode-locked lasers. ”Nature Photonics , vol.6, no.2 ,pp.84-92, 2012.
[9] H. A. Haus, J. G. Fujimoto and E. P. Ippen, “Analytic theory of additive-pulse and Kerr lens mode-locking ,”IEEE Journal of Quantum Electronics, vol. 28, no. 10, pp. 2086-2096, 1992.
[10] K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Optics Letters ,vol. 18,no. 13,pp. 1080-1082, 1993.
[11] Hailong Yu, Xiaolin Wang, Pu Zhou, Xiaojun Xu and Jinbao Chen, “High-Energy Square Pulses in a Mode-Locked Yb-Doped Fiber Laser Operating in DSR Region,” IEEE Photon Technology Letter, vol.27,no.7, 2015.
[12] E. Snitzer, H. Po, F. Hakimi, “Double clad, offset core Nd fiber laser”, Optical Fiber Sensors, vol. 88, 1988.
[13] M. Rose and S. Editor, “A history of the laser: a trip through the light fantastic”, Photonics, 2010.
[14] T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann and D. Kracht, “Promising single-frequency laser for next-generation gravitational wave detectors”, Proceedings of SPIE, 2016.
[15] Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power”, Optics Express, vol. 12, pp. 6088-6092, 2004.
[16] Kuleshov, “CW laser performance of Yb and Er, Yb doped tungstates.” Applied Physics & Lasers and Optics ,pp.409-413,1997
[17] Y.W.Song, S.Y.Jang, W.S. Han and M.K.Bae, “Q-switched fiber lasers with carbon nanotubes hosted in ceramics ,”Applied Optics, vol.51,no.3,pp. 290-294, 2010.
[18] A. K. Stanislav, O. B. Yuri and D. G. C. Ana, “Distributed model for actively Q-switched erbium-doped fiber lasers”, IEEE Photonics Technology Letters, vol. 47, pp. 928-934, 2011.
[19] 莊威哲和蘇冠暐,“高功率、高重覆率之脈衝式光子晶體光纖雷射”, 科儀新知,第三十五卷,第二期,2013年。
[20] 曾瀞萱,“全光纖式之被動Q開關鉺鐿共摻光纖雷射:設計與實現”,國立台灣科技大學碩士論文, 2016。
[21] D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser”, Applied Physics Letters, vol. 98, pp. 73-106, 2011.
[22] J. Liu, S. Wu, Q. H. Yang and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Optics Letters, vol. 36,no. 20,pp. 4008-4010, 2011.
[23] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),”Optics Express, vol. 22,no. 25,pp. 31113-31122, 2014.
[24] 陽洋,“GVD 和 SPM 效應對超高斯脈衝影響的研究”,北京郵電大學,2008年。
[25] H. A. Haus, K. Tamura, L. E. Nelson and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,”IEEE Journal of Quantum Electronics, vol. 31,no. 3, pp. 591 - 598, 1995.
[26] Wu, Chiming and Niloy K.Dutta. “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser. ” IEEE journal of quantum electronics ,pp.145-150, 2000.
[27] Haus, Herman A. “Mode-locking of lasers. ”IEEE Journal of Selected Topics in Quantum Electronics, pp.1173-1185, 2000.
[28] F. X. K¨artner and U. Keller, “Stabilization of solitonlike pulseswith a slow saturable absorber,” Optics Letters, vol. 20,no. 1,pp. 16-18, 1995.
[29] 陳凱銘,“結合主僕震盪與疊加波鎖模之摻鉺光纖雷射:設計與實現”, 國立台灣科技大學碩士論文, 2016。
[30] Menyuk, Curtis R. “Pulse propagation in an elliptically birefringent Kerr medium. ” IEEE journal of quantum electronics , pp.2674-2682, 1989.
[31] 廖顯奎,“當代光纖通訊”,台北,高立圖書有限公司, 2012年。
[32] Pedersen, Bo, et al. “The design of erbium-doped fiber amplifiers. ” Journal of lightwave technology , pp.1105-1112, 1991.
[33] Hanna, D. C., et al. “Frequency upconversion in Tm-and Yb: Tm-doped silica fibers.”Optics Communications ,pp.187-194, 1990.
[34] 林佳妏,“雙級高功率鉺鐿共摻光纖放大器之模擬、設計與應用”,國立台灣科技大學碩士論文,2015年。
[35] P. C. Becker, N. A. Olsson and J. R. Simpson, “Erbium-doped fiber amplifiers, fundamentals and technology,” Academic Press, 1999.
[36] V. Reichel, S. Unger and H. R. Zellmer, “8 W highly-efficient Yb-doped fiber-laser”, Proceedings of SPIE, vol. 3989, pp. 160-169, 2000.
[37] Valley, George C. “Modeling cladding-pumped Er/Yb fiber amplifiers.” Optical Fiber Technology, pp.21-44, 2001.
[38] P. K. Cheo and G. G. King, “Clad-pumped Yb/Er codoped fiber lasers”, IEEE Photonics Technology Letters, vol. 13, pp.188-190, 2001.
[39] 彭昶銘,“三級高功率鉺鐿共摻光纖放大器研製與應用”,國立台灣科技大學碩士論文,2015年。
[40] J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski and S. G. Grubb, “Yb3+ sensitized Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain”, Electronics Letters, vol. 27, pp. 1958-1959, 1991.
[41] S. Toroghi, A. K. Jafari and A. H. Golpayegani , “A model of lasing action in a quasi-four-level thin active media”, IEEE Journal of Quantum Electronics, vol. 46, pp.871-876, 2010.
[42] Q. Han, J. Ning and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers”, IEEE Journal of Quantum Electronics, vol. 46, pp.1535-1541, 2010.
[43] Zenteno, Luis. “High-power double-clad fiber lasers. ” Journal of Lightwave Technology, pp.1435-1446,1993.

QR CODE