簡易檢索 / 詳目顯示

研究生: 張智瑄
Chih-Hsuan Chang
論文名稱: 光固化式彩色3D列印之滾輪整平模組設計與研究
Design and study on roller module for Photo-curable color 3D printing
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 蔡明忠
none
汪家昌
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 光固化式彩色3D列印表面粗糙度整平機制
外文關鍵詞: Photo-Curable color 3D printing, Plane roughness, Leveling mechanism
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來3D列印在各界被廣泛應用,其中光固化式3D列印技術搭配壓電噴頭具有較佳的色彩飽和度、製程解析度及產品機械強度,其製程過程中需搭配整平技術以精準控制層厚及移除材料,目前以滾輪式整平技術具較佳效果,然而對於滾輪式整平技術之相關控制參數大多皆掌握於製造商中,且並無相關文獻進行探討,故本研究將針對滾輪整平技術進行進一步探討,以利設計開發3D列印機台之整平技術改善及發展。
    本研究設計同時具有壓平及移除材料功能之滾輪整平模組做為整平機制,並針對影響參數如:滾輪轉速、疊層高度及零組件規格等進行設計、實驗及探討,且制定一平坦度量測流程,包含面及線之粗糙度量測,從中驗證最佳製程參數。經實驗後證實本研究所設計機台之最佳滾輪轉速為正轉1100rpm,除克服表面不平整相關問題外,亦於多色圖形色彩穩定度有良好之效果,同時證實滾輪並無顯著影響物件輪廓之跡象,且不具導致混色或模糊色彩等不良影響。根據本研究所設計之滾輪平整模組及平坦度測量方法,未來更換材料或平板速度之調整情形,依循平坦度量測流程即可確立最佳整平技術之滾輪轉速,不僅可提供日後3D列印技術之整平技術提升及參考,對未來光固化式彩色3D列印技術之完善具有相當之重要性。


    Recently, 3D printing has been widely used in different fields. The photo-curable 3D printing technology with piezo head has the better highly color saturation, better resolution and more mechanical strength on the products. During the manufacturing process, it needs leveling technology to precisely control the layers and removes unnecessary materials., the roller leveling technology is the more efficient way at present. Moreover, the related control parameters of the roller leveling techniques are controlled by the manufacturers who do not have the related literature review. Therefore, our research is focused on the further explore for the roller leveling technology which improving the leveling technology and development of 3D printing machine.
    The research of roller both was designed to have flatten and to remove the material as a leveling mechanism. We focused on the design of the effect parameters such as roller speed, layer height and component specifications. The study develops a flatness measuring process which contains a rough measurement of the surfaces and the lines which verify the optimal process parameters.
    Based on the results of the experiments, we can confirm that the best roller speed of this machine is forward 1100 rpm. In addition to overcome the roughness and the stable multicolor graphics color, it confirmed that the roller does not have obvious effect on the objects’ contours and does not cause adverse effect of mixing or blurred colors.
    According to the research design of roller leveling module and flatness measuring method, if materials and flat rate were changed in the future, you can proceed on the flatness measurement process to establish the optimum of roller speed. The process can not only provide leveling technology of 3D printing and reference, but also it is significant of improving the performance of the 3D printing in the near future.

    第一章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 研究方法與步驟 1.4 本文架構 第二章 文獻探討 2.1 積層製造技術(Additive Manufacturing,AM) 2.1.1 光聚合固化技術(Vat Photopolymerization) 2.1.2 材料擠製成型技術(Material Extrusion) 2.1.3 材料噴塗成型技術(Material Jetting) 2.1.4 黏著劑噴塗成型技術(Binder Jetting) 2.1.5 粉體熔化成型技術(Powder Bed Fusion) 2.1.6 疊層製造成型技術(Sheet Lamination) 2.1.7 指向性能量沉積技術(Directed Energy Deposition) 2.2 目前市面多色機種介紹 2.2.1 Binder jetting 2.2.2 Sheet lamination 2.2.3 Material jetting 2.3 滾輪相關技術 第三章 機台架構與滾輪相關 3.1 機台架構 3.1.1 XYZ軸向模組 3.1.2 列印噴頭模組 3.1.3 光源固化模組 3.1.4 負壓控制模組 3.1.5 列印平台模組 3.2 滾輪相關之參數 3.2.1 滾輪與列印平板速度 3.2.2 滾輪與列印平板之方向 3.2.3 噴頭噴印點之理論位置 3.2.4 滾輪機制 第四章 滾輪設計與實驗方法 4.1 滾輪設計 4.1.1 機構設計 4.1.2 馬達選用 4.2 實驗方法 4.2.1 軟體設定 4.2.2 滾輪校正 4.2.3 堆疊一個面之設計 4.2.4 平坦度量測設計 4.2.5 量測設備 第五章 實驗結果與討論 5.1 定義一個面及面之堆疊 5.2 未整平–新、舊噴頭粗糙度 5.2.1 新噴頭 5.2.2 舊噴頭 5.3 平板速度換算 5.4 單色列印實驗結果 5.4.1 正轉 5.4.2 逆轉 5.5 正轉與逆轉最佳粗糙度值比較 5.6 最佳轉速計算的流程 5.7 整平前後之輪廓值比較 5.8 整平滾輪前後之多色比較 第六章 結論與未來研究方向 6.1 結論 6.2 未來研究方向

    [1]The Benefits of Rapid Prototyping. Invention Addict. 2012.
    [2]A. Maffezzoli. "Rapid Prototyping: an overview." University Of Lecce, Italy. 2000.
    [3]快速成型技術的原理介紹. 阿里巴巴塑料網. 2012.
    [4]I. Gibson, D. W. Rosen, B. Stucker. "Additive manufacturing technologies." Vol. 238. New York: Springer, 2010.
    [5]光聚合固化成型技術(Vat Photopolymerization), I. Gibson, D. W. Rosen, B. Stucker. "Additive manufacturing technologies." Vol. 238. New York: Springer, 2010.
    [6]材料擠製成型技術(Material Extrusion), I. Gibson, D. W. Rosen, B. Stucker. "Additive manufacturing technologies." Vol. 238. New York: Springer, 2010.
    [7]Stratasys company history. Funding Universe.
    [8]Loughborough University. Material Jetting. http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/
    [9]材料噴塗成型技術(Material Jetting). http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/
    [10]黏結劑噴塗成型技術(Binder Jetting), I. Gibson, D. W. Rosen, B. Stucker. "Additive manufacturing technologies." Vol. 238. New York: Springer, 2010.
    [11]粉體熔化成型技術(Powder Bed Fusion), I. Gibson, D. W. Rosen, B. Stucker. "Additive manufacturing technologies." Vol. 238. New York: Springer, 2010.
    [12]疊層製造成型技術(Sheet Lamination), http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/sheetlamination/
    [13]指向性能量沉積成型技術(Directed Energy Deposition), I. Gibson, D. W. Rosen, B. Stucker. "Additive manufacturing technologies." Vol. 238. New York: Springer, 2010.
    [14]T. Kesavadas, K. C. Stalis. "Rapid informational prototypes, including rapid colored prototypes." U.S. Patent No. 6,654,656. 25 Nov. 2003.
    [15]S. Tochimoto, N. Kubo. "Apparatus for forming a three-dimensional product." U.S. Patent No. 6,799,959. 5 Oct. 2004.
    [16]J. Jang. "Computer-controlled object-building process and apparatus for depositing colorful objects on a layer-by-layer basis under the control of a data processing system." U.S. Patent No. 6,129,872. 10 Oct. 2000.
    [17]M. Stanić, B. Lozo. "Color and permanence issues in 3D ink-jet printing." MIPRO, 2010 Proceedings of the 33rd International Convention. IEEE, 2010.
    [18]D. D. Coe. "Method and system for colorizing a stereolithographically generated model." U.S. Patent No. 6,746,814. 8 Jun. 2004.
    [19]D. C. Collins. "Preventing the sticking of plastic materials to molds." U.S. Patent No 1,558,440, 1925.
    [20]http://www.3dsystems.com/ 3D SYSTEMS.
    [21]http://www.swtc.com/ 實威國際股份有限公司.
    [22]http://www.mcortechnologies.com/ Mcor.
    [23]http://www.stratasys.com/ Stratasys.
    [24]E. M. Kritchman, D. Chechik, T. Rodin-Entin. "System and method for accurate printing of three dimensional models utilizing adjustment parameters." U.S. Patent No. 7,209,797. 24 Apr. 2007.
    [25]E. M. Kritchman, D. Chechik, T. Rodin-Entin. "Device, system and method for accurate printing of three dimensional objects." U.S. Patent No. 7,369,915. 6 May 2008.
    [26]E. M. Kritchman, D. Chechik, T. Rodin-Entin. "Method for printing of three-dimensional objects." U.S. Patent No. 7,604,768. 20 Oct. 2009.
    [27]J. H. Lim, H. V. Angulo, J. D. Clay, K. Moussa. "Selective deposition modeling using CW UV LED curing." U.S. Patent No. 8,876,513. 4 Nov. 2014.
    [28]R.L. Zinniel, J.S. Batchelder. "High-resolution rapid manufacturing." U.S. Patent No. 7,236,166. 26 Jun. 2007.
    [29]J. M. Brown, B. Hyer, J. Stockwell. "Method and apparatus for selective deposition modeling." U.S. Patent No. 6,352,668. 5 Mar. 2002.
    [30]H. Gothait. "System and method for three dimensional model printing." U.S. Patent No. 6,658,314. 2 Dec. 2003.
    [31]J. J. Fong. "Calibrating deposition rates in selective deposition modeling." U.S. Patent No. 6,782,303. 24 Aug. 2004.
    [32]H. Gothait. "System and method for three dimensional model printing." U.S. Patent No. 6,850,334. 1 Feb. 2005.
    [33]金養智. "光固化材料性能及應用手冊." 2010.
    [34]D. A. Leeman, S. J. Coleman, D. J. Dziadzio, W. K. Giguere, R. F. Goodnow. "System and method of measuring deflected doctor blade angle and loading force." U.S. Patent No. 5,783,042. 21 Jul. 1998.

    無法下載圖示 全文公開日期 2021/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE