簡易檢索 / 詳目顯示

研究生: 王昱偉
Yu-Wei Wang
論文名稱: 具容錯功能的交流/直流轉換器應用在永磁同步電動機驅動系統的研究
Research on Fault - Tolerant AC/DC Converters for PMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 林法正
Faa-Jeng Lin
楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 150
中文關鍵詞: 永磁同步電動機交流/直流轉換器橋式整流器直流鏈電容功率元件容錯控制
外文關鍵詞: permanent magnet synchronous motor, AC/DC converter, bridge rectifier, DC-link capacitor, power device, fault-tolerant control
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討具容錯功能的交流/直流轉換器應用在永磁同步電動機驅動系統。首先,探討不具功因校正的單相及三相交流/直流轉換器,當整流器有一個二極體開路或短路故障時的容錯控制,以期儘速以備用整流器替代。接著,探討單相及三相直流鏈電容老化故障時的容錯控制,以提升永磁同步電動機驅動系統的可靠度,並使得驅動系統在執行完容錯控制後,迅速回復到原有性能運轉。
此外,本文亦考慮具功因校正的單相交流/直流轉換器容錯。當功因校正電路的功率元件開路或短路故障時,造成原本具功因校正的轉換器失效。本文中探討功率元件開路或短路的容錯控制,使得功率元件損毀的情況下,得以切換至備用功率元件,使具功因校正的單相交流/直流轉換器儘速回復正常運作。
文中使用德州儀器公司所生產的數位信號處理器TMS320F2808,作為控制核心,實現橋式整流器、直流鏈電容,和功率元件故障的容錯功能。實驗結果與理論分析頗為吻合,說明本文所提方法的正確性及可行性。


This thesis proposes the fault-tolerant AC/DC converters that are used for permanent magnet synchronous motor drive systems. First, the fault-tolerant control of single-phase and three-phase AC/DC rectifiers without power factor correction is investigated. When a diode of the rectifier is opened or short-circuited, a backed-up rectifier is used to replace the faulty one. Next, the faults of the single-phase and three-phase DC-link capacitors are studied to improve the reliability of the permanent magnet synchronous motor drive systems. As a result, the fault-tolerant control systems can recover to original speeds as soon as possible.
In addition, the fault-tolerant control of the single-phase AC/DC converter with power factor correction is studied. When one of the power device is opened or short-circuited, the function of power factor correction is failed. To solve this problem, the fault-tolerant control of power device opened or short-circuited is discussed. When one of the power devices is failed, a back-up power device is used to replace the faulty one. As a result, the power factor correction of the single-phase AC/DC converter can be recovered quickly.
A digital signal processor, type TMS320F2808, made by Texas Instruments is used as the control center of the device system to provide the fault tolerance function of a faulty full-bridge rectifier, DC-link capacitor, and an opened or short-circuited power device. Experimental results validate theoretical analysis and show the correctness and feasibility of the proposed methods.

目錄 摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 XII 符號索引 XIII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 3 1.3研究目的 6 1.4論文大綱 7 第二章 永磁同步電動機 8 2.1簡介 8 2.2結構及特性 8 2.3數學模式 13 第三章 交流/直流轉換器容錯控制 20 3.1簡介 20 3.2具容錯的電動機驅動系統 21 3.3變頻器及脈波寬度調變 23 3.3.1變頻器 23 3.3.2脈波寬度調變 23 3.4單相轉換器容錯控制 26 3.4.1橋式整流器容錯 28 3.4.2直流鏈電容容錯 32 3.5三相轉換器容錯控制 37 3.5.1橋式整流器容錯 39 3.5.2直流鏈電容容錯 42 第四章 具功因校正的交流/直流轉換器容錯控制 44 4.1簡介 44 4.2具功因校正的交流/直流轉換器 45 4.2.1功率因數的定義 45 4.2.2電路工作原理 47 4.2.3 脈波寬度調變控制方法 57 4.3具功因校正轉換器的功率開關容錯 60 4.3.1簡介 60 4.3.2故障偵錯 62 4.3.3容錯控制 63 第五章 系統研製 64 5.1簡介 64 5.2硬體電路 67 5.2.1三相變頻器及驅動電路 67 5.2.2功率開關及功率二極體的選擇 69 5.2.3橋式整流器及容錯電路 71 5.2.4驅動系統偵測電路 73 5.2.5編碼器電路 77 5.2.6數位信號處理器 78 5.3軟體程式設計 80 5.3.1主程式 80 5.3.2中斷服務程式 82 第六章 實測結果 86 6.1簡介 86 6.2實測結果 88 第七章 結論及未來研究方向 123 參考文獻 125

參考文獻
[1] G. C. R. Sincero, J. Cros, and P. Viarouge, “Arc models for simulation of brush motor commutations,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1518-1521, May 2008.
[2] R. D. Hall and W. J. Konstanty, “Commutation of DC Motors,” IEEE Industry Applications Magazine, vol. 16, no. 6, pp. 56-62, November 2010.
[3] Y. Gao, T. Sanmaru, G. Urabe, H. Dozono, K. Muramatsu, K. Nagaki, Y. Kizaki, and T. Sakamoto, “Evaluation of stray load losses in cores and secondary conductors of induction motor using magnetic field analysis,” IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 1965-1968, May 2013.
[4] S. O. Kwon, J. J. Lee, B. H. Lee, J. H. Kim, K. H. Ha, and J. P. Hong, “Loss distribution of three-phase induction motor and BLDC motor according to core materials and operating,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4740-4743, September 2009.
[5] M. Zafarani, T. Goktas, B. Akin, and S. E. Fedigan, “Modeling and dynamic behavior analysis of magnet defect signatures in permanent magnet synchronous motors,” IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3753-3762, May 2016.
[6] S. Fang, H. Liu, H. Wang, H. Yang, and H. Lin, “High power density PMSM with lightweight structure and high-performance soft magnetic alloy core,” IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1-5, January 2019.
[7] X. Meng, S. Wang, J. Qiu, Q. Zhang, J. G. Zhu, Y. Guo, and D. Liu, “Robust multilevel optimization of PMSM using design for six sigma,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3248-3251, September 2011.
[8] C. Jeong, Y. Kim, and J. Hur, “Optimized design of PMSM with hybrid type permanent magnet for improving performance and reliability,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4692-4701, September 2019
[9] J. Gao, C. Gong, W. Li, and J. Liu, “Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM,” IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5816-5819, August 2020.
[10] Y. Yang, K. Zhou, M. Cheng, and W. Lu, “Robust odd-harmonic repetitive controller for three-phase CVCF PWM inverters,” IEEE ICEMS-2011, pp. 1-5, November 2011.
[11] S. Kim, J. Lee, and K. Lee, “Self-tuning adaptive speed controller for permanent magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1493-1506, March 2017.
[12] X. Zhou, J. Sun, H. Li, M. Lu, and F. Zeng, “PMSM open-phase fault-tolerant control strategy based on four-leg inverter,” IEEE Transactions on Power Electronics, vol. 35, no. 3, pp. 2799-2808, July 2020.
[13] C. J. Gajanayake, B. Bhangu, S. Nadarajan, and G. Jayasinghe, “Fault tolerant control method to improve the torque and speed response in PMSM drive with winding faults,” IEEE PEDS-2011, pp. 956-961, December 2011.
[14] W. Hu, C. Ruan, H. Nian, and D. Sun, “Simplified modulation scheme for open-end winding PMSM system with common DC bus under open-phase fault based on circulating current suppression,” IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 10-14, June 2020.
[15] X. Wang, Z. Wang, Z. Xu, M. Cheng, W. Wang, and Y. Hu, “Comprehensive diagnosis and tolerance strategies for electrical faults and sensor faults in dual three-phase PMSM drives,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6669-6684, October 2019.
[16] C. Wu, C. Guo, Z. Xie, F. Ni, and H. Liu, “A signal-based fault detection and tolerance control method of current sensor for PMSM drive,” IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9646-9657, March 2018.
[17] I. Jlassi, J. O. Estima, S. K. E. Khil, N. M. Bellaaj, and A. J. M. Cardoso, “A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives,” IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2894-2905, October 2017.
[18] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2092-2100, October 2010.
[19] Y. Da, X. Shi, and M. Krishnamurthy, “A novel universal sensor concept for survivable PMSM drives,” IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5630-5638, March 2013.
[20] A. Akrad, M. Hilairet, and D. Diallo, “Design of a fault-tolerant controller based on observers for a PMSM drive,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1416-1427, March 2011.
[21] N. K. Nguyen, F. Meinguet, E. Semail, and X. Kestelyn, “Fault-tolerant operation of an open-end winding five-phase PMSM drive with short-circuit inverter fault,” IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 595-605, January 2016.
[22] H. T. Eickhoff, R. Seebacher, A. Muetze, and E. G. Strangas, “Post-fault operation strategy for single switch open-circuit faults in electric drives,” IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2381-2391, February 2018.
[23] Q. An, L. Sun, and L. Sun, “Current residual vector-based open-switch fault diagnosis of inverters in PMSM drive systems,” IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2814-2827, September 2015.
[24] D. Kastha and B. K. Bose, “Investigation of fault modes of voltage-fed inverter system for induction motor drive,” IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 1028-1038, July/August 1994.
[25] Y. Wu and X. Du, “A VEN condition monitoring method of DC-link capacitors for power converters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1296-1306, May 2019.
[26] T. T. L. Pham, F. Richardeau, and G. Gateau, “Real-time monitoring for a five-level double-boost power factor controller including postfault reconfiguration,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 4128-4135, October 2013.
[27] A. M. EL. Refaie, “Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 107-121, September 2010.
[28] S. Hwang, H. Lee, T. Kim, Y. Jung, and J. Hong, “The influence of electromagnetic force upon the noise of an IPM motor used in a compressor,” IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 3494-3496, September 2006.
[29] C. Lai, K. L. V. Iyer, K. Mukherjee, and N. C. Kar, “Analysis of electromagnetic torque and effective winding inductance in a surface-mounted PMSM during integrated battery charging operation,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, May 2015.
[30] H. Wang and F. Blaabjerg, “Reliability of capacitors for DC-link applications in power electronic converters—an overview,” IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3569-3578, February 2014.
[31] H. Soliman, H. Wang, and F. Blaabjerg, “A review of the condition monitoring of capacitors in power electronic converters,” IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4976-4989, July 2016.
[32] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, and P. Tavner, “An industry-based survey of reliability in power electronic converters,” IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1441-1451, March 2011.
[33] K. Ma, H. Wang, and F. Blaabjerg, “New approaches to reliability assessment: using physics-of-failure for prediction and design in power electronics systems,” IEEE Power Electronics Magazine, vol. 3, no. 4, pp. 28-41, December 2016.
[34] A. Lahyani, P. Venet, G. Grellet, and P. Viverge, “Failure prediction of electrolytic capacitors during operation of a switchmode power supply,” IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1199-1207, November 1998.
[35] A. J. M. Cardoso, Diagnosis and Fault Tolerance of Electrical Machines, Power Electronics and Drives, Stevenage:Institution of Engineering and Technology, 2018.
[36] K. Abdennadher, P. Venet, G. Rojat, J. Rétif, and C. Rosset, “A real-time predictive-maintenance system of aluminum electrolytic capacitors used in uninterrupted power supplies,” IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1644-1652, July 2010.
[37] M. L. Gasperi, “Life prediction modeling of bus capacitors in AC variable frequency drives,” IEEE Transactions on Industry Applications, vol. 41, no. 6, pp. 1430-1435, November 2005.
[38] H. Chen and J. Liao, “Design and implementation of sensorless capacitor voltage balancing control for three-level boosting PFC,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3808-3817, August 2014.
[39] X. Liang, C. Zhang, S. Srdic, and S. M. Lukic, “Predictive control of a series-interleaved multicell three-level boost power-factor-correction converter,” IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8948-8960, December 2018.
[40] W. Hongyang and H. Xiangning, “Single phase three-level power factor correction circuit with passive lossless snubber,” IEEE Transactions on Power Electronics, vol. 17, no. 6, pp. 946-953, November 2002.
[41] F. Guo, Y. Man, F. Sun and C. Bian, “Research on single phase two-level grid-connected photovoltaic power generation system based on Boost circuit MPPT control,” IEEE ICPRE-2016, pp. 553-557, October 2016.
[42] A. M. Pastor, E. V. Idiarte, A. C. Pastor and L. M. Salamero, “Minimum DC-Link Capacitance for Single-Phase Applications With Power Factor Correction,” IEEE Transactions on Power Electronics, vol. 67, no. 6, pp. 5204-5208, June 2020.

無法下載圖示 全文公開日期 2024/07/29 (校內網路)
全文公開日期 2026/07/29 (校外網路)
全文公開日期 2026/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE