簡易檢索 / 詳目顯示

研究生: 盧泰宇
Tai-Yu Lu
論文名稱: 數個負極承載氧化物或硫化物添加石墨組成之合成及分析
Synthesis and analysis of several negative electrodes loaded with oxide or chalcogenide plus graphite
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 姜嘉瑞
Chia-Jui Chiang
許貫中
Kung-Chung Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 球磨石墨烯氧化錫硫化鎂
外文關鍵詞: ball milling, graphene, tin oxide, Magnesium sulfide
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備鋰離子混合式電容器之負極材料,以高能量行星式球磨機製備邊緣羧化石墨烯再以無電電鍍方式鍍上錫並發現電性較差、邊緣羧化石墨烯堆疊層數較多、邊緣氧化影響電性,使邊緣羧化石墨烯鍍氧化錫無法有效利用。因次另外球磨不同金屬硫化物的複合材料做為負極材料,並藉由金屬與鋰的合金反應以及硫的高電容量來做為球磨材料的選擇依據,球磨MoS2/graphite、Sn/MoS2/graphite、Sb2S3/graphite、MgS/graphite搭配1M LiPF6 in EC:DEC:DMC=1:1:1 (Vol%)有機電解液組成電化學儲能電池,並以恆電流充、放電測量分析負極材料之電化學性能,研究之初即考慮以低製備成本及簡易製備流程來達到競爭力。
    本研究主要使用高效能行星式球磨機來製備負極材料,在球磨罐中放置乾冰使其昇華成二氧化碳來達到提供高壓二氧化碳的球磨環境,再與石墨球磨製備邊緣羧化石墨烯(ECG),並以傅立葉轉換紅外光譜分析其碳氧的鍵結方式,以及使用拉曼分析其D band 與G band 比值來探討石墨化程度以及結構上破壞程度,用元素分析分析碳氧比以及使用EDS分析以無電電鍍還原錫(ECG/SnO2)的比例,再來與直接球磨MoS2/graphite、Sn/MoS2/graphite、Sb2S3/graphite、MgS/graphite 材料進行恆電流充、放電測量分析比較,可以發現ECG/SnO2在第二圈及第三圈放電電容量為190 mAhg-1和180 mAhg-1,MoS2/graphite在第二圈及第三圈放電電容量450 mAhg-1和400 mAhg-1,Sn/MoS2/graphite在第二圈及第三圈放電電容量560 mAhg-1和475mAhg-1,Sb2S3/graphite在第二圈及第三圈放電電容量 420 mAhg-1和240 mAhg-1而MgS/graphite在第二圈及第三圈放電電容量380 mAhg-1和300 mAhg-1。


    We study the compositions of several negative electrodes for lithium hybrid capacitor and their capacities. The negative electrodes are loaded with oxide and chalcogenides mixed with graphite, which have undergone high-energy (satellite) ball milling. Selection of electrode active materials involves the cost consideration and their potentials in application right from the start. We have spent a significant amount of time preparing the edge carboxylated graphene (ECG) through ball milling, following by coating of tin metal with electroplating. Unfortunately, the product of ECG/SnO2 is less conductive and edge oxidation makes tin oxide fall off easily. Therefore, we switch to other compositions and search for conversion electrodes suitable for future research. The compositions being ball milled include MoS2/graphite, Sn/MoS2/graphite, Sb2S3/graphite, MgS/graphite. Their capacities are measured in the electrolyte of 1 M LiPF6 in EC:DEC:DMC=1:1:1 (vol%) electrolyte, using galvanostatic charge-discharge test.
    Edge carboxylated graphene has been exfoliated through high energy ball milling in an environment filled with sublimed dry ice. Carbon dioxide is adsorbed on the edge of graphene such that the edge is carboxylated. The carbon-oxygen bonding is analyzed with Fourier transform infrared analysis. The graphene structure is studied with micro Raman. The carbon/oxygen ratio is measured using elemental analysis. The elemental ratio of ECG/SnO2 is measured with energy dispersive X-ray spectroscopy (EDS). The electrode capacity values are recorded as follows. The capacity of ECG/SnO2 is measured 190 mAhg-1 (2nd cycle) and 180 mAhg-1 (3rd cycle); that of MoS2/graphite is 450 (2nd cycle) and 400 mAhg-1 (3rd cycle); that of Sn/MoS2/graphite is 560 (2nd cycle) and 475 mAhg-1 (3rd cycle); that of Sb2S3/graphite is 420 (2nd cycle) and 240 mAhg-1 (3rd cycle); that of MgS/graphite is 380 (2nd cycle) and 300 mAhg-1 (3rd cycle).

    We study the compositions of several negative electrodes for lithium hybrid capacitor and their capacities. The negative electrodes are loaded with oxide and chalcogenides mixed with graphite, which have undergone high-energy (satellite) ball milling. Selection of electrode active materials involves the cost consideration and their potentials in application right from the start. We have spent a significant amount of time preparing the edge carboxylated graphene (ECG) through ball milling, following by coating of tin metal with electroplating. Unfortunately, the product of ECG/SnO2 is less conductive and edge oxidation makes tin oxide fall off easily. Therefore, we switch to other compositions and search for conversion electrodes suitable for future research. The compositions being ball milled include MoS2/graphite, Sn/MoS2/graphite, Sb2S3/graphite, MgS/graphite. Their capacities are measured in the electrolyte of 1 M LiPF6 in EC:DEC:DMC=1:1:1 (vol%) electrolyte, using galvanostatic charge-discharge test.
    Edge carboxylated graphene has been exfoliated through high energy ball milling in an environment filled with sublimed dry ice. Carbon dioxide is adsorbed on the edge of graphene such that the edge is carboxylated. The carbon-oxygen bonding is analyzed with Fourier transform infrared analysis. The graphene structure is studied with micro Raman. The carbon/oxygen ratio is measured using elemental analysis. The elemental ratio of ECG/SnO2 is measured with energy dispersive X-ray spectroscopy (EDS). The electrode capacity values are recorded as follows. The capacity of ECG/SnO2 is measured 190 mAhg-1 (2nd cycle) and 180 mAhg-1 (3rd cycle); that of MoS2/graphite is 450 (2nd cycle) and 400 mAhg-1 (3rd cycle); that of Sn/MoS2/graphite is 560 (2nd cycle) and 475 mAhg-1 (3rd cycle); that of Sb2S3/graphite is 420 (2nd cycle) and 240 mAhg-1 (3rd cycle); that of MgS/graphite is 380 (2nd cycle) and 300 mAhg-1 (3rd cycle).


    摘要 I 目錄…………………………………………………………...III 圖目錄………………………………………………………...VI 表目錄………………………………………………………VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧與理論基礎 4 2.1石墨電極材料 4 2.2 石墨烯製程方法 5 2.2.1機械剝離法 8 2.2.2 高效能機械球磨法 9 2.2.3溼式球磨法 10 2.2.4乾式球磨法 10 2.3 電容器 12 2.3.1 電化學電容器(Electrochemical capacitors, EC) 12 2.3.2 擬電容器 (Pseudocapacitor) 14 2.3.3 鋰離子混合式電容器 (Lithium-ion hybrid capacitors, LIHC)…………………………………………………………..16 2.3.4 鋰離子混合式電容器負極材料 16 2.3.5 鋰離子混合式電容器電解液 17 第三章 實驗方法與步驟 19 3.1 實驗藥品耗材與儀器設備 19 3.1.1 負極材料製備 19 3.1.2 電性量測 21 3.1.3 電化學測試儀器及設備 23 3.1.4 材料鑑定及分析之儀器 錯誤! 尚未定義書籤。 3.2 實驗流程 24 3.2.1 製備邊緣羧化石墨烯(ECG)實驗流程 24 3.2.2 ECG/SnO2合成流程 24 3.2.3 MoS2/graphite合成流程 25 3.2.4 Sn/MoS2/graphite合成流程 25 3.2.5 Sb2S3/graphite合成流程 26 3.2.6 MgS/graphite合成流程 26 3.2.7 電極製備流程 27 3.3 實驗步驟 27 3.3.1 製備邊緣羧化石墨烯(ECG)實驗步驟 27 3.3.2 ECG/SnO2合成步驟 28 3.3.3 MoS2/graphite合成步驟 29 3.3.4 Sn/MoS2/graphite合成步驟 299 3.3.5 Sb2S3/graphite合成步驟 30 3.3.6 MgS/graphite合成步驟 31 3.3.7 漿料製備步驟 32 3.3.8 電流收集器清洗及準備工作 32 3.4 電極材料鑑定與分析 33 3.4.1 場發射掃瞄式電子顯微鏡 33 3.4.2 拉曼光譜 33 3.4.3 X光繞射分析 34 3.4.4 傅立葉轉換紅外光譜分析(FTIR) 35 3.4.5 元素分析儀 36 3.4.6 恆電流充、放電量測 36 第四章 結果與討論 38 4.1 邊緣羧化石墨烯(Edge-Carboxylated Graphene)材料分析 38 4.1.1 傅立葉轉換紅外光譜(FTIR)分析 38 4.1.2 元素分析(Elemental Analysis) 40 4.1.3 RAMAN分析 41 4.1.4 XRD分析 44 4.2 SnO2/ECG材料分析 46 4.2.1 SnO2/ECG XRD分析 46 4.2.2 ECG/SnO2之形貌 48 4.2.3 ECG/SnO2 成分分析 49 4.2.4 SnO2/ECG單電極充、放電行為 50 4.3 材料MoS2/graphite和Sn/MoS2/graphite材料分析 54 4.3.1 MoS2/graphite恆電流充、放電分析 54 4.3.2 Sn/MoS2/graphite恆電流充、放電分析 56 4.4 材料Sb2S3/graphite材料分析 58 4.4.1 XRD 分析 58 4.4.2 恆電流充、放電分析 59 4.5 材料MgS/graphite材料分析 61 4.5.1XRD 分析………………………………………………..61 4.5.2 恆電流充、放電分析 62 4.5.3 循環伏安分析…………………………………………..64 第五章 結論 66

    1. T. Placke, O. Fromm, Simon Winter, Peter bieker, Sergej Rothermel, Hinrich-Wilhelm Meyer, Stefno Passerini, Martin Winter. Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells.Journal of the Electrochemical Society, 2012. 159(11): p.A1755-A1765.
    2. Gao, J., et al., Solvation effect on intercalation behavior of tetrafluoroborate into graphite electrode. Journal of Power Sources,2015.278:p.452-457.
    3. Seel, J. and J.Dahn, Electrochemical intercalation of PF 6 into graphite. Journal of the Electrochemical Society,200.147(3): p. 892-898.
    4. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc. 131 (19) (2009) 3611–3620.
    5. A. Ciesielski, P. Samori, Graphene via sonication assisted liquid-phase exfoliation, Chem. Soc. Rev. 43 (1) (2014) 381–398.
    6. C. Mattevi, H. Kim, M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem. 21 (10) (2011) 3324–3334.
    7. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (6) (1958) 1339.
    8. M. Yi, and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” J. Mater. Chem. A, vol. 3, no. 22, pp. 11700-11715, 2015.
    9. In-Yup Jeon, Yeon-Ran Shin, Gyung-joo Sohn, Hyun-Jung Choi, Seo-Yoon Bae, Javeed-Mahmood, Sun-Min Jung, Jeong-Min Seo Min-Jung Kim, Dong Wook, Chang,Liming Dai, and Jong-Beom Baek, “Edge-carboxylated graphene nanosheets via ball milling,” Proc Natl Acad Sci U S A, vol. 109, no. 15, pp. 5588-93, Apr 10, 2012.
    10. R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol. 45, pp. 2483-2498 (2000)
    11. G. Wang, L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, vol. 41, pp. 797-828 (2012)
    12. J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, vol. 142, pp. 2699-2703 (1995)
    13. K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, “Symmetric redox supercapacitor with conducting polyaniline electrodes”, Journal of Power Sources, vol. 103, pp. 305-309 (2002)
    14. A. Clemente, S. Panero, E. Spila, B. Scrosati, “Solid-state, polymer-based, redox capacitors”, Solid State Ionics, vol. 85,pp. 273-277 (1996)
    15. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, pp. 613-620 (1999)
    16. A. Burke, “R&D considerations for the performance and application of electrochemical capacitors”, Electrochimica Acta, vol. 53, pp. 1083-1091 (2007)
    17. P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”, Nature materials, vol. 7, pp. 845-854 (2008)
    18. D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, Journal of Power Sources, vol. 74, pp. 99-107 (1998)
    19. A. R. Kamali, D. J. Fray, “Tin-based materials as advanced anode materials for lithium ion batteries: A review”, Reviews on Advanced materials science, vol.27, pp.14-24 (2011)
    20. M. N. Obrovac, L. Christensen, “Structural changes in silicon anodes during lithium insertion/extraction”, Electrochemical and Solid-State Letters, vol.7, pp. A93-A96 (2004)
    21. M. J. Lindsay, G. X. Wang, H. K. Liu, “Al-based anode materials for Li-ion batteries”, Journal of Power Sources, vol. 119-121, pp. 84-87 (2003)
    22. C. K. Chan, X. F. Zhang, Y. Cui, “High capacity Li ion battery anodes using Ge nanowires”, Nano Letters, vol. 8, pp. 307-309 (2008)
    23. R. A. Huggins, “Lithium alloy negative electrodes”, Journal of Power Sources, vol. 81-82, pp. 13-19 (1999)
    24. Xiaolin Li, Wen Qi, Donghai Mei, Maria L. Sushko, Ilhan Aksay, Jun Lui, “Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites,” Adv Mater, vol. 24, no. 37, pp. 5136-41, Sep 25, 2012.
    25. Meng Wang, Guangda Li, Huayun Xu, Yitai Qian, Jian Yang, “Enhanced lithium storage performances of hierarchical hollow MoS(2) nanoparticles assembled from nanosheets,” ACS Appl Mater Interfaces, vol. 5, no. 3, pp. 1003-8, Feb, 2013.
    26. Qiang Ru, Xiaoqiu Chen, Bei Wang, Qing Guo, Zhen Wang, Xianhua Hou, Shejun Hu, “Biological carbon skeleton of lotus-pollen surrounded by rod-like Sb 2 S 3 as anode material in lithium ion battery,” Materials Letters, vol. 198, pp. 57-60, 2017.
    27. Haihua Zhao, Hong Zeng, Yin Wu, Shenqen Zhang, Bo Li, Yuhui Huang, “Facile scalable synthesis and superior lithium storage performance of ball-milled MoS2–graphite nanocomposites,” J. Mater. Chem. A, vol. 3, no. 19, pp. 10466-10470, 2015.
    28. D. Y. Yu, H. E. Hoster, and S. K. Batabyal, “Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries,” Sci Rep, vol. 4, pp. 4562, Apr 02, 2014.
    29. Zheng Yi, Qiqang Han, Yang Cheng, Yaoming Wu, Limin Wang, “Facile synthesis of symmetric bundle-like Sb2S3 micron-structures and their application in lithium-ion battery anodes,” Chem Commun (Camb), vol. 52, no. 49, pp. 7691-4, Jun 08, 2016.
    30. Thrinathreddy Ramireddy, Mokhlesur Rahman, Tan Xing, Ying Chen, Alexey M. Glushenkov, “Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation,” Journal of Materials Chemistry A, vol. 2, no. 12, pp. 4282, 2014.
    31. M. Dahbi, F. Ghamouss, T. V. François, D. Lemordant, M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, vol. 196, pp. 9743-9750 (2011).
    32. Z.Shi, M. Liu, D. Naik, J. L. Gole, “Electrochemical Properties of Li-Mg Alloy Electrodes for Lithium Batteries, ” J. Power Sources, 92(2001)70-80.
    33. M. Helen, Maximilian Fichtner, Magnesium Sulphide as Anode
    Material for Lithium-Ion Batteries, Published in Electrochimical
    Acta,169 (2015) 180.

    無法下載圖示 全文公開日期 2022/10/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE