簡易檢索 / 詳目顯示

研究生: 王子綜
Harki - Apri Yanto
論文名稱: 新式垂直阻力型風力發電機組之開發研究
Development of the Multi-Blade, Drag-Type, Vertical Axis Wind Turbine
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 林榮慶
Zone-Ching Lin
黃緒哲
Shiuh-Jer Huang
楊旭光
Shiuh-Kuang Yang
郭鴻森
Kou, Hong-Sen
蔡博章
Bor-Jang Tsai
黃仲欽
Jonq-Chin Hwang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 133
中文關鍵詞: 垂直式風力發電機阻力型式可拆式測試平台安全評估
外文關鍵詞: Vertical-axis wind turbine, Drag type, Flexible Experiment Platform, Safety Evaluation
相關次數: 點閱:312下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要在設計發展一組具重量減輕、設計簡單、經濟價值高等特點的多扇葉阻力型之垂直軸風力發電(Multi-Blade, Vertical-Axis Wind Turbine; MVAWT),經數學模擬研究以及計算流體動力學分析,並與製造及實驗相結合來進行一個完整的風力發電機之研究發展。初步的設計過程中,當阻力型垂直軸風力發電運轉在迎風面(Upwind)時,數值與實測皆觀測到大量的負阻力產生。爲了減少迎風負阻力的影響,本文進行葉片翻轉機構的設計開發,接著按照IEC61400-12規格來規劃設計與製造安裝,一台小尺寸的多扇葉阻力型之垂直軸風力發電機及其性能測試平台,以進行風力發電功能與葉片翻轉機構的性能觀察。爲了將環境資訊與功率因數等資訊記錄到測試平臺,在此將發電機、加載系統(Loading System)、氣象桅杆系統(Environmental Mast)和實驗數據採集系統(DAQ)整合安裝作為一個發展風力發電機的性能測量系統。同時,把數據過濾處理和實驗結果分析整理,在LabView之架構建立成一個可靠的計算機程序;故這風力發電機系統可以運用自動化方式進行現場性能與觀察;此外,爲了取得足夠且準確的實驗數據,在程式中將引進統計概念以正確判斷執行數據處理過程。接下來,運用數學模型和計算流力模擬工作來進行分析估計,以在MVAWT操作過程整理取得其扭矩分佈和氣動力特性;經由集中於在葉片周圍的氣流相互作用之觀察,並結合葉片自動翻轉機構提供的一些現象,可歸納得知在迎風條件下減少阻力,能有效地獲得低風速中的操作之足夠扭力,而得以提昇風力機之轉速,進而取得較高之輸出功率。綜上所述,本論文結合MVAWT的實驗數據和數值模擬結果,可以奠定作為一種替代能源來源的整合R&D研究之基礎。


      In this study, the development of a light-weight, simple design, and high economic value multi-blade, drag-type, vertical-axis wind turbine (MVAWT) is carried out by combining the design, mathematical model, computational fluid dynamic, fabricating, and experimental means as a complete research scheme. At first, the design process is approached by the evidence of a huge amount of negative drag force during the upwind condition for the drag-type, vertical-axis wind turbine. An automatic blade-flipping mechanism design is developed with the purpose to minimize the drag force on the upwind condition. Followed by that, fabrication and installation of a full-scale small size MVAWT is conducted to observe the functional of blade flipping mechanism and the wind turbine performance. The complete experimental work follows the IEC61400-12 standard procedure for ensuring the accurate experimental data. Besides, an electric generator, off-line loading system, meteorology mast system, and real-time data acquisition system (DAQ) are installed as a sophisticated wind turbine measuring system, where all environmental information and power data from sensors and generator on the platform are recorded and transferred to the computer automatically. Afterwards, the data processing and in-depth analysis on the experimental outcomes are executed via the established computer program. Consequently, the on-site performance of wind turbine/generator system is attained in an automatic and systematic manner. Moreover, for providing sufficient data and its accuracy, statistic concept is enforced to judge whether the test data are appropriate for considering in the data-processing procedure.
    Also, mathematic model and CFD simulation are conducted to estimate the torque distribution and flow characteristics during the operation of MVAWT. By focusing on the flow interaction around the blade, it can be concluded that the autonomous blade-flipping mechanism generate several important phenomenon, such as less drag force during the upwind condition, a sufficient thrust force to gain torque during the operation in low wind speed. In summary, combine with experimental data and numerical simulation results, this systematic and rigorous study on MVAWT is presented and can be served as a stepping stone for executing the R&D in harvesting wind energy as an alternative energy source.

    摘要 I ABSTRACT III CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XII NOMENCLATURE XIII Chapter 1 INTRODUCTION 1 1.1 Overviews of Wind Energy around World and Taiwan 1 1.2 Background Review and Problem Description 4 1.2.1 Background review 4 1.2.2 Problem description 9 1.3 Purpose and Scope of Study 11 1.4 Overview of the Dissertation 12 Chapter 2 MVAWT DESIGN 15 2.1 Background 15 2.2 MVAWT Design 18 2.2.1 Blade design 19 2.2.2 Bearing and hinge system design 22 2.2.3 Shaft design 24 2.2.4 Foldable tower system 26 2.3 Auto-Flip Blade and Overall Design 27 Chapter 3 AERODYNAMIC ANALYSIS OF MVAWT 34 3.1 Mathematic Approach 34 3.1.1 Simplified mathematic model 34 3.1.2 Maximum performance estimation 39 3.2 CFD Approach 42 3.2.1 MVAWT aerodynamic interactions 42 3.2.2 Blade flipping analysis 46 Chapter 4 EXPERIMENTAL SETUP OF MVAWT 48 4.1 Fabrication of MVAWT 48 4.1.1 Fabrication of tower 49 4.1.2 Fabrication of shaft’s part 49 4.1.3 Fabrication of hinge system 50 4.1.4 Fabrication of blade parts 51 4.2 Wind Feasibility Study and Preparation of the Test Site 53 4.3 Installation Procedure of Wind Turbine 58 4.4 Instrumentation Installation and Preparation 60 4.4.1 Meteorological mast installation and system 64 4.4.2 Power measurement 71 4.4.3 Loading system 74 4.4.4 Data acquisition system 76 4.4.5 Data processing 76 Chapter 5 DATA ANALYSIS OF MVAWT 82 5.1 Flow Interaction Data from CFD Simulation 82 5.1.1 Torque generated estimation. 82 5.1.2 Feasibility study of local wind turbine site 85 5.1.3 2D flow simulation of MVAWT 88 5.1.4 3D flow simulation 89 5.1.5 Blade flipping analysis 93 5.2 MVAWT Measurement Data 97 5.2.1 Meteorological measurement data 97 5.2.2 Defining the wind turbine characteristics 99 5.3 MVAWT Power Estimation 100 Chapter 6 CONCLUSIONS 104 6.1 Concluding Remarks 104 6.2 Future Work 109 Reference 111

    [1] “Global Wind Statistic 2012”, Technical Report, Global Wind Energy Council, (2013)
    [2] World Wind Energy Association,
    http://www.wwindea.org/home/index.php
    [3] Swamy, N.V.C., Aswatha-Narayana, P.A., and Chandrasekhar, K., “Parametric Studies of Parabolic Vertical Axis Wind Rotors”, Journal of Renewable Energy, Vol. 3, pp. 947-949 (1993)
    [4] Beans, E. W., “Approximate Aerodynamic Analysis for Multi-Blade Darrieus Wind Turbines”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 25, No. 2, pp. 131-150 (1987)
    [5] Saha, U. K., Thotla, S., and Maity, D., “Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, No. 9, pp. 1359-1375 (2008)
    [6] Newman, B. G., and Ngabo, T. M., “The Design and Testing of A Vertical-Axis Wind Turbine Using Sails”, Journal of Energy Conversion, Vol. 18, pp. 141-154 (1978)
    [7] Fleming, P. D., Probert, S. D., and Tanton, D., “Designs and Performances of Flexible and Taut Sail Savonius-Type Wind Turbines”, Journal of Applied Energy, Vol. 19, pp. 97-110 (1985)
    [8] Murai, H., Maruyama, S., and Tsukui, M., “Experimental Research on Gyromill Type Vertical Axis Wind Turbine Using a Sail Wing”, Journal of Wind Engineering and Industrial Aerodynamic, Vol. 15, pp. 357-368 (1983)
    [9] Morcos, V. H., Abdel-Hafez, O. M. E., “Testing of an Arrow-Head Vertical Axis Wind Turbine Model”, Journal of Renewable Energy, Vol. 7, No. 3, pp. 223-231 (1996)
    [10] Davis, A. C., “The Cycloidal Turbine as an Air Impeller”, Journal of Wind Engineering and Industrial Aerodynamic, Vol. 31, pp. 125-128 (1988)
    [11] Hwang, I. S., Min, S. Y., Jeong, I. O., Lee, Y. H., and Kim, S. J., “Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion”, Proceeding of Smart Structure and Materials 2006: Active and Passive Smart Structure and Integrated Systemic of Optical Engineering, Vol. 6173, pp. 316-323 (2007)
    [12] Hwang, I. S., Lee, Y. H., and Kim, S. J., “Optimization of Cycloidal Water Turbine and the Performance Improvement by Individual Blade Control”, Journal of Applied Energy, Vol. 86, pp. 1532-1540 (2009)
    [13] Tabassum, S. A. and Probert, S. D., “Vertical-Axis Wind Turbine: A Modified Design”, Journal of Applied Energy, Vol. 28, pp. 59-67 (1987)
    [14] Muller, G., Jentsch, M. F., and Stoddart, E., “Vertical Axis Resistance Type Wind Turbines for Use in Buildings”, Journal of Renewable Energy, Vol. 34, pp. 1407-1412 (2008)
    [15] Pope, K., Rodrigues, V., Doylea, R., Tsopelas, A., Gravelsins, R., Naterer, G. F., and Tsang, E., “Effects of Stator Vanes on Power Coefficients of a Zephyr Vertical Axis Wind Turbine”, Journal of Renewable Energy, Vol. 35, pp. 1043-1051 (2010)
    [16] SolidWorks 2006 Tutorial, SolidWorks Cooperation (2005)
    [17] Manwell, J.F., McGowan, J. G., and Rogers, A. L., Wind Energy Explained – Theory, Design and Application, John Wiley & Sons, LTD. (2002)
    [18] White, F. M., Viscous Fluid Flow, McGraw-Hill, Inc. (1991)
    [19] Barton, T., Sharpe, D., Jenkins, N., and Bossanyi, E., Wind Energy Handbook, John Wiley & Sons, LTD. Chap. 3, pp. 45 (2001)
    [20] Guo, T. S., “The experimental test and development of Multiblade Vertical Axis Wind Turbine”, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan (2010)
    [21] FLUENT 6.3 User’s Guide, Fluent Inc. (2008)
    [22] Jones, W. P. and Launder, B. E., "The Prediction of Laminarization with a Two-Equation Model of Turbulence", International Journal of Heat and Mass Transfer, Vol. 15, pp. 301-314. (1972)
    [23] Menter, F. R., “Zonal Two Equation k-ω: Turbulence Models for Aerodynamic Flows”, Proceeding of 24th AIAA Fluid Dynamic Conference, AIAA paper, Vol. 93, pp. 2906 (1993)
    [24] You, D. and Moin, P., "A Dynamic Global-Coefficient Subgrid-Scale Eddy-Viscosity Model for Large-Eddy Simulation in Complex Geometries", Journal Physics of Fluids, Vol. 19, pp. 065110 (2007)
    [25] Uranga, A., Persson, P., Drela, M., and Peraire, J., “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings”, 19th AIAA Computational Fluid Dynamics, San Antonio, Texas (2009)
    [26] Pindado, S. and Meseguer, J., “Wind Tunnel Study on The Influence of Different Parapets on The Roof Pressure Distribution of Low-Rise Buildings”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 91, pp. 1133-1139 (2003)
    [27] Kopp, G. A., et al., “Wind Effects of Parapets on Low Buildings: Part 1. Basic Aerodynamics and Local Loads”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 93, pp. 817-841 (2005)
    [28] Wang, S. Y., “Flow Simulation of A VAWT on The Building Roof”, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2010
    [29] Stevens, M. J. M. and Smulders, P. T., “The Estimation of the Parameter of the Weibull Wind Speed Distribution for Wind Energy Utilization Purposes”, Journal of Wind Engineering, Vol. 3, Issues 2, pp. 132-145, (1979)
    [30] IEC Wind Turbine Standard, IEC61400-12 Wind Turbine Power Performance Testing, (1998)
    [31] LabVIEW:Data Acquisition Basic Manuals, National Insturment Corp., (1998)
    [32] Yanto, H. A., Lin, C. T., Hwang, J. C., and Lin, S. C., “Modeling and Control of Household-Size Vertical Axis Wind Turbine and Electric Power Generation System”, International Cconference Power Electronic and Drive System, pp. 1301-1307, Taipei, (2009)
    [33] Lin, S. C., Chuang, F. S., and Yanto, H. A., “Establishment of a Removable Experimental Platform for VAWT”, Journal of Vibroengineering, Vol. 14, Issue 3, pp. 1085-1095 (2013)

    QR CODE